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Outline of Today’s presentations

• Towards foundational (meta)models of Water Distribution 
Networks with Graph Neural Networks — Dr R. Taormina

• Faster and Transferable Urban Drainage Simulations with Graph 
Neural Networks — A. Garzón

• Relating complex network theory metrics with discoloration 
activity in Water Distribution Systems — Dr G. Kyritsakas
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PART 1
Urban Water Networks and Graph Machine Learning
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Urban Water Cycle
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Urban Water Cycle
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Urban Water Networks

Water Distribution Networks

Deliver treated, potable water, with sufficient pressure from source 
facilities to residential, commercial, and industrial consumers.

Urban Drainage Networks

Collect and transport storm water and 
wastewater away from populated areas to 

prevent flooding and grant sanitation.
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Physical vs. Non-Physical Networks

Node/Edge Features:

– Physical: Attributes have physical meaning (e.g., pipe diameters and flowrate).

– Non-Physical: Attributes are more abstract or symbolic 
(e.g., number of connections in a social network or ratings in a recommender system).

Laws & Constraints:

– Physical: Governed by physical laws (e.g., fluid dynamics in a water network).

– Non-Physical: Governed by non-physical patterns and principles 
(e.g., user behavior or social norms).

Spatial Relationship:

– Physical: Spatial relation is crucial (e.g., physical distance affects energy loss).

– Non-Physical: Spatial relation is typically not relevant or abstracted away 
(e.g., a social network connection can span large distances).

Other considerations for temporal dynamics, noise/uncertainty, scalability, ...
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Water Distribution Networks

Static Dynamic

Type: junction, tank, reservoir Pressure, Head(=pressure + 
node elevation) 

Node elevation Water demand

Tank volume Water quality parameters

… …

Static Dynamic

Type: pipes, valves, pumps Flowrate, velocity

Pipe geometry: diameter, 
length, area.

Headloss

Roughness coefficient Water quality parameters

Pump curve Link status (e.g., on/off, 
closed/open)

Node Features

Edge Features

Few sources,
Many sinks
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Urban Drainage Systems: Stormwater Sewers

Collect and transport storm water from 
populated areas to prevent flooding.
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Urban Drainage Systems: Wastewater Sewers 

Also known as sanitary sewers: collect and 
transport wastewater from populated areas 
to provide sanitation.
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Urban Drainage Systems: Combined Sewers 

Perform both functions together, mainly to 
save space in densely populated areas.
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Catchments can be modelled as nodes

Many sources,
Few sinks

Urban Drainage Systems

Static Dynamic

Node type: junction, 
storage, outlets, 
catchments, ...

Pressure, Water Depths

Node elevation Head (=pressure + 
elevation) 

Storage volume Runoff, Wastewater inflow

Catchment characteristics Water quality parameters

Static Dynamic

Link type: pipes, valves, 
pumps, weirs, ...

Flowrate

Pipe geometry: diameter, 
length, ...

Headloss

Roughness coefficient Water quality parameters

Pump curve Link status (e.g., on/off, 
closed/open)

Node Features

Edge Features
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What pipes does Mario use?

A) Water Distribution Network

B) Stormwater Sewer

C) Sanitary Sewer

D) Combined Sewer
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Graph Machine Learning for Water Networks

Inductive bias: data is or comes from a network

Graph ML 
exploit structure!

Traditional = lossy!

Nodal pressure

Machine 
learning model
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• State Estimation: infer the state of the networks (e.g., head, flows) from a 
few sensors (e.g., pressure gauge, flow meter)

– Node/edge regression 

• Leak Detection: Identifying potential leaks in the water network by detecting 
anomalies in water pressure or flow data

– Node/edge classification/regression

• Water quality monitoring/forecasting

– Node/edge regression (e.g., depends where water quality is sampled)

• Asset Maintenance: what components to repair or substitute? 

– Node/edge ranking

Graph ML tasks in Water Networks (1/2)



16

• Blockage identification: detect blockages in UDS (e.g., from accumulation of 
debris, collapses, roots, ...) or unreported closed valves
– Edge classification

• Sewer overflow: predict the release of untreated sewage into the 
environment due to reached system capacity or blockages
– Node regression (at the outlet node)

• Estimation of Network Resilience: predict the ability of the system to 
withstand and recover from disruption (e.g., due to redundancy)
– Graph regression

• Metamodelling: reproduce and generalize physics-based simulation with high 
accuracy and considerable speedups
– Node/edge regression

Graph ML tasks in Water Networks (2/2)
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• Blockage identification: detect blockages in UDS (e.g., from accumulation of 
debris, collapses, roots, ...) or unreported closed valves
– Edge classification

• Sewer overflow: predict the release of untreated sewage into the 
environment due to reached system capacity or blockages
– Node regression (at the outlet node)

• Estimation of Network Resilience: predict the ability of the system to 
withstand and recover from disruption (e.g., due to redundancy)
– Graph regression

• Metamodelling: reproduce and generalize physics-based simulation with high 
accuracy and considerable speedups
– Node/edge regression

Graph ML tasks in Water Networks (2/2)
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PART 2
Transferable Metamodels 
for Water Distribution Networks
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AI & Digital Twins

… but where is the data?
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How it should be….
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How it is…
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Transfer Learning
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Transfer Learning

Can we build a foundational model for 
Water Distribution Networks?
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Yes? From lots of simulations….
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… and real data
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We need Graph Neural Networks…

Learn transferable representation across multiple graphs

Graph ML 
exploit structure!

Traditional = lossy!

Nodal pressure

Machine 
learning model
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Learning from simulations: metamodelling

Graph ML 
exploit structure!

Traditional = lossy!

Nodal pressure

Machine 
learning model
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Basic Physics in Water Distribution System

Conservation of Energy

Conservation of Mass

Headloss formula

hi head in node i 
hLij headloss in pipe ij 
qij flow in pipe ij 
Di water demand of node i 
hi head in node i 
r resistance coefficient
n flow exponent
m minor losses

Source https://epanet22.readthedocs.io/ 

elev. z1 z2

p1/γ p2 / γ

h1

h2

γ =specific weight of water

WDS flow is always pressurized

https://epanet22.readthedocs.io/
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Problem Definition: steady-state simulations

• Given inputs
– Water demand requested by all 

nodes of the system

– Head (energy) of water source 
(reservoir)

– Network geometry/characteristics

• Determine
– Pressure at all junctions (nodes)

– Water flow in all pipes (edges)

• Simplifications
– Steady-state conditions

– No valves/pumps/storage tanks
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Problem Definition: transferable metamodeling

• We run several simulations in 
EPANET on different case studies

• We train a GNN to reproduce the 
simulations

• We check whether the GNN can 
learn shared representations 
across case studies. 
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Node-based GNN for metamodeling

Encoder Processor
Pressure at all 
nodes

L layers

Decoder

Reservoir head
Node demands
Node elevations
Pipe length
Pipe diameters
Pipe roughness

Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network 

metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.
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Node-based GNN for metamodeling

Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network 

metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.
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Results: single case study 

Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network 

metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.
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Results: learning shared representations

Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network 

metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.
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Conclusions for node-based GNN

• Overall worse performance than MLPs

• Prone to over-smoothing

• Limited transferability

Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network 

metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.
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Edge-based GNNs

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with

edge-based graph neural networks." in Review
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Basic Physics in Water Distribution System

Conservation of Energy

Conservation of Mass

Headloss formula

hi head in node i 
hLij headloss in pipe ij 
qij flow in pipe ij 
Di water demand of node i 
hi head in node i 
r resistance coefficient
n flow exponent
m minor losses

Source https://epanet22.readthedocs.io/ 

elev. z1 z2

p1/γ p2 / γ

h1

h2

γ =specific weight of water

WDS flow is always pressurized

https://epanet22.readthedocs.io/
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Case Studies

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with

edge-based graph neural networks." in Review
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Experiment 1: in-the-domain generalization

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with

edge-based graph neural networks." in Review
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Results: in-the-domain generalization

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with

edge-based graph neural networks." in Review
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Experiment 2: transferability

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with

edge-based graph neural networks." in Review
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Results: transferability

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with

edge-based graph neural networks." in Review
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Conclusions for edge-based GNNs

• Model based on edge convolutions are more accurate

• They show much better transferability

• Speedups from 350 to 10 times with respect to EPANET 
simulations, depending on size of the network

• Reduction of speedups mainly due to pressure reconstruction 
from flows.

• Simultaneous prediction of pressures and flowrates can provide 
better speedups.

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with

edge-based graph neural networks." in Review
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Future work

• Representation of valves, tanks and pumps for more realism

• From single steady-state simulation to extensive simulations (i.e., 
over 1 day, 1 week, …)

• Training on a much larger set of networks (e.g., synthetic)

• Fine-tuning with real data

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with

edge-based graph neural networks." in Review
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Thanks for listening! Questions?

Dr Riccardo Taormina, r.taormina@tudelft.nl 
Bulat Kerimov, bulat.kerimov@ntnu.no 

mailto:r.taormina@tudelft.nl
mailto:bulat.kerimov@ntnu.no
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APPENDIX
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Physics of Urban Drainage Systems

• More complex than in water distribution systems

• Flow regime changes depending on volumes

– Gravity flow when the pipes are partially full

– Pressurized flow when the pipes are full (like in WDS)
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Results: single case study 

Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network 

metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.
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