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Outline of Today’s presentations

* Towards foundational (meta)models of Water Distribution
Networks with Graph Neural Networks — Dr R. Taormina

* Faster and Transferable Urban Drainage Simulations with Graph
Neural Networks — A. Garzon

* Relating complex network theory metrics with discoloration
activity in Water Distribution Systems — Dr G. Kyritsakas
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Urban Water Networks

Water Distribution Networks

Deliver treated, potable water, with sufficient pressure from source
facilities to residential, commercial, and industrial consumers.

Urban Drainage Networks

Collect and transport storm water and
wastewater away from populated areas to
prevent flooding and grant sanitation.




Physical vs. Non-Physical Networks

Node/Edge Features:
— Physical: Attributes have physical meaning (e.g., pipe diameters and flowrate).
— Non-Physical: Attributes are more abstract or symbolic
(e.g., number of connections in a social network or ratings in a recommender system).
Laws & Constraints:
— Physical: Governed by physical laws (e.g., fluid dynamics in a water network).
— Non-Physical: Governed by non-physical patterns and principles
(e.g., user behavior or social norms).
Spatial Relationship:
— Physical: Spatial relation is crucial (e.g., physical distance affects energy loss).

— Non-Physical: Spatial relation is typically not relevant or abstracted away

(e.g., a social network connection can span large distances).

Other considerations for temporal dynamics, noise/uncertainty, scalability, ... ALE 5
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Urban Drainage Systems: Stormwater Sewers
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Urban Drainage Systems: Wastewater Sewers

Also known as sanitary sewers: collect and
transport wastewater from populated areas
to provide sanitation.
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Urban Drainage Systems: Combined Sewers

Perform both functions together, mainly to
save space in densely populated areas.
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Urban Drainage Systems

Many sources,
Few sinks

Node Features

Node type: junction, Pressure, Water Depths

storage, outlets,

catchments, ...

Node elevation Head (=pressure +
elevation)

Storage volume Runoff, Wastewater inflow

Catchment characteristics Water quality parameters

Edge Features

Link type: pipes, valves, Flowrate
pumps, weirs, ...

Pipe geometry: diameter, Headloss

length, ...

Roughness coefficient Water quality parameters Catchments can be modelled as nodes
Pump curve Link status (e.g., on/off,

closed/open)
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What pipes does Mario use?

A) Water Distribution Network
B) Stormwater Sewer

C) Sanitary Sewer

D) Combined Sewer
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Graph Machine Learning for Water Networks

Inductive bias: data is or comes from a

Nodal pressure
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Graph ML tasks in Water Networks (1/2)

» State Estimation: infer the state of the networks (e.g., head, flows) from a
few sensors (e.g., pressure gauge, flow meter)

— Node/edge regression

* Leak Detection: Identifying potential leaks in the water network by detecting
anomalies in water pressure or flow data

— Node/edge classification/regression
*  Water quality monitoring/forecasting
— Node/edge regression (e.g., depends where water quality is sampled)

* Asset Maintenance: what components to repair or substitute?
— Node/edge ranking
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Graph ML tasks in Water Networks (2/2)

* Blockage identification: detect blockages in UDS (e.g., from accumulation of
debris, collapses, roots, ...) or unreported closed valves

— Edge classification
* Sewer overflow: predict the release of untreated sewage into the
environment due to reached system capacity or blockages
— Node regression (at the outlet node)
* Estimation of Network Resilience: predict the ability of the system to
withstand and recover from disruption (e.g., due to redundancy)
— G@Graph regression
* Metamodelling: reproduce and generalize physics-based simulation with high
accuracy and considerable speedups
— Node/edge regression

Al
DRO
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Graph ML tasks in Water Networks (2/2)

* Blockage identification: detect blockages in UDS (e.g., from accumulation of
debris, collapses, roots, ...) or unreported closed valves

— Edge classification
* Sewer overflow: predict the release of untreated sewage into the
environment due to reached system capacity or blockages
— Node regression (at the outlet node)
* Estimation of Network Resilience: predict the ability of the system to
withstand and recover from disruption (e.g., due to redundancy)
— G@Graph regression
* Metamodelling: reproduce and generalize physics-based simulation with high
accuracy and considerable speedups
— Node/edge regression
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Transferable Metamodels
for Water Distribution Networks
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How it should be.
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Transfer Learning
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Can we build a foundational model for
Water Distribution Networks?
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We need Graph Neural Networks...

Learn transferable representation across multiple graphs

Nodal pressure
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Learning from simulations: metamodelling

Nodal pressure
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Basic Physics in Water Distribution System

Conservation of Energy hi — Ny — hLEj(Qtj)
Headloss formula hr:. = . | . |n_1 . | : |
Lij — T Qi |49 +m qij |49ij

Conservation of Mass § qij — Di =0
J

head in node i
headloss in pipe ij
flow in pipe ij
water demand of node i
head in node i
resistance coefficient
flow exponent

minor losses

> =

Lij

N =

3 S T 02

Source https://epanet2?2.readthedocs.io/
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Problem Definition: steady-state simulations

* Given inputs

— Water demand requested by all
nodes of the system

— Head (energy) of water source
(reservoir)

b
— Network geometry/characteristics  ° /<
* Determine

— Pressure at all junctions (nodes) /f&{

— Water flow in all pipes (edges)
* Simplifications

— Steady-state conditions

— No valves/pumps/storage tanks
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Problem Definition: transferable metamodeling

* We run several simulations in

EPANET on different case studies . \.\ﬂ

* We train a GNN to reproduce the 4\\ v 4,
simulations ‘ ‘

* We check whether the GNN can “ ‘ ‘\
learn shared representations ‘ ‘, 4 [
across case studies. 4 Y ;’
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Node-based GNN for metamodeling

L layers
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AI
-I,-;U D I f Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network @ NTNU | Nowegien university of o DRO
e t metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234. ¥ LAB
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Node-based GNN for metamodeling
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Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network @ NTNU | Norwegian universit of 2080 DRO
metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234. ¥ LAB




Results: single case study

(a) (b) (c)
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MLP GNN
R_squared Speedup  #params |R_squared Speedup # params
(a) FOS 0.379 879 200k 0.815 71 60k
(b) BAK 0.993 1393 50k 0.993 56 60k
(c) PES 0.561 1241 200k 0.445 43 200k
(d) MOD| 0.868 2223 300k 0.763 24 200k
(e) RUR 0.929 2029 500k 0.906 27 200k
(f) KL 0.482 4001 300k 0.468 22 200k

Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network
metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.

®NTNU | ey (3
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Results: learning shared representations

Lo] X< gl X mp
O > GNN

§0.8~ g %D’ ) unbalanced
‘20-& [0 balanced
© O X [> balanced extended
§ 0.4 >
< 0.2 X -

0.0 . . . , X

FOS BAK PES MOD RUR KL

Table 2 | Training datasets used for the study on transferability

Name FOS BAK PES MOD RUR KL Total
Unbalanced 1,024 1,024 1,024 1,024 1,024 1,024 6,144
Balanced 2,048 2,048 1,067 279 199 81 5,722
Balanced extended 8,000 8,000 4,169 1,088 777 316 22,350
Al
Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network ®NTNU | E‘S&“ﬁf?ﬁfﬂ!ﬁ?ﬂfﬁgj 2080 DRO

LAB

metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.
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Conclusions for node-based GNN

* Overall worse performance than MLPs
* Prone to over-smoothing
* Limited transferability

AI
Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network @ NTNU | Nopesen universty o DRO

metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234. LAB
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Edge-based GNNs

we \/firtual links

Edge-centered representation Flowrate prediction via ENN Pressure-reconstruction
—— Real links
® Real nodes
/\ ¥ Virtual nodes
X I Reservoir
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v

Figure 2: Overview of the model predicting steps. The second step (center) reconstructs flowrates based on the augmented
representation of the network with virtual sinks. Next, nodal pressures are calculated based on Hazen-Williams and conservation

laws.
L
H\.—o i\\.\
\ / Figure 3: Visualization of virtual sinks. Each node is augmented
* * ° with a virtual sink that emulates the flow out of the system
based on the consumption volume. In the edge level represen-
Figure 4: Lifting of the representation to edge level with tation the virtual sinks act as flowmeter sensors.
corresponding connectivity matrices.
-i-;l.’ D Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with @ NTNU | Nowegien university of .
elft " . Science and Technology
edge-based graph neural networks." in Review
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Basic Physics in Water Distribution System

Conservation of Energy hi — Ny — hLEj(Qtj)
Headloss formula hr:. = . | . |n_1 . | : |
Lij — T Qi |49 +m qij |49ij

Conservation of Mass § qij — Di =0
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head in node i
headloss in pipe ij
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Source https://epanet2?2.readthedocs.io/
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Case Studies

APULIA JILIN BAK ASNET2 PES
(a) (Hall, 2021) (b) (Bi and Dandy, 2014) (c) (Lee and Lee, 2001) (d) (Xing and Sela, 2022) (e) (Bragalli et al., 2012)
== ﬁ 5% :
(f) (Vrachimis et al., (g) (Rossman, 2016) (h) (Dandy, 2016) (i) (Bragalli et al., 2012) (j) (Kang and Lansey,
2022) 2012)
AI
Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with @ NTNU | Nowegien university of Co DRO
. . Science and Technology
edge-based graph neural networks." in Review LAB
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Experiment 1: in-the-domain generalization

APULIA JILIN ASNET2

(a) (Hall, 2021) (b) (Bi and Dandy, 2014) (c) (Lee and Lee, 2001) (d) (Xing and Sela, 2022) (e) (Bragalli et al., 2012)

MOD
(f) (Vrachimis et al., (g) (Rossman, 2016) (h) (Dandy, 2016) (i) (Bragalli et al., 2012) (j) (Kang and Lansey,
2022) 2012)
AI
Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with @ NTNU | Nowegien university of Co DRO
. . Science and Technology

edge-based graph neural networks." in Review LAB
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Results: in-the-domain generalization

Towards transferable metamodels of water distribution systems with edge-based graph neural network

ASnet2 LTown Z))
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% - -=- Varying pipe parameters (GNN) .
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-+ Varying pipe parameters (ENN)
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0.2-

0.1- 0.1-

Figure 7: In-the-domain comparison of accuracy in terms of R? of predicted heads (left) and flowrates (right) between GNN
(pink) and ENN (purple). Dashed line shows the performance of the model trained on the subset with varying pipe parameters,
while a solid line indicates the performance of a model trained on the subset with fixed and known pipe parameters.

Al
Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with @ NTNU | Nowegien university of Caese DRO
. . Science and Technology \
edge-based graph neural networks." in Review LAB
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Experiment 2: transferability

APULIA JILIN ASNET2

(a) (Hall, 2021) (b) (Bi and Dandy, 2014) (c) (Lee and Lee, 2001) (d) (Xing and Sela, 2022) (e) (Bragalli et al., 2012)

| E .
(f) (Vrachimis et al., (g) (Rossman, 2016) (h) (Dandy, 2016) (i) (Bragalli et al., 2012) (j) (Kang and Lansey,
2022) 2012)
Al
Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with @ NTNU | Nowegien university of Co DRO
. . Science and Technology

edge-based graph neural networks." in Review LAB
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Results: transferability

Results of evaluation of out-of-domain water networks

Case  Average demand Maximum Heads, Flowrates,

study q, L/s K R? R?
ASnet2 5 4.5-10! 0.832 0.793
Z)J 5 3.5-10° 0.858 0.848
Jilin 5 1.5-10° 0.950 0.983
Apulia 5 7.4-10° 0.883 0.982
Al
Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with ®NTNU | ?3&“?55&%"3?2?1%;; 2oso DRO

edge-based graph neural networks." in Review LAB
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Conclusions for edge-based GNNs

* Model based on edge convolutions are more accurate
* They show much better transferability

* Speedups from 350 to 10 times with respect to EPANET
simulations, depending on size of the network

* Reduction of speedups mainly due to pressure reconstruction
from flows.

* Simultaneous prediction of pressures and flowrates can provide
better speedups.

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with @ NTNU | Nowegien university of . DRO
edge-based graph neural networks." in Review
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Future work

* Representation of valves, tanks and pumps for more realism

* From single steady-state simulation to extensive simulations (i.e.,
over 1 day, 1 week, ...)

* Training on a much larger set of networks (e.g., synthetic)

* Fine-tuning with real data

Al

Kerimov, Bulat, et al. "Towards transferable metamodels for water distribution systems with @ NTNU | Yorweger gggo; 2050 Ef\g

edge-based graph neural networks." in Review
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Thanks for listening! Questions?

Dr Riccardo Taormina, r.taormina@tudelft.nl
Bulat Kerimov, bulat.kerimov@ntnu.no
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APPENDIX
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Physics of Urban Drainage Systems

* More complex than in water distribution systems

* Flow regime changes depending on volumes
— Gravity flow when the pipes are partially full

— Pressurized flow when the pipes are full (like in WDS)
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Results: single case study

Table 5 | Hyperparameters and RZscores for the best metamodels

Model FOS PES PES MOD RUR KL
MLP # hidden units 256 128 256 256 256 64
# hidden layers 4 3 3 2 2 2
Dropout 0 0.25 0.25 0 0 0.25
R? validation 0.364 0.991 0.570 0.859 0.944 0.472
R? test 0.360 0.993 0.561 0.868 0.929 0.482
GNN Embedding dimension 32 32 64 32 32 64
# conv. layers 3 2 3 3 3 3
# hidden units 64 128 128 128 128 128
K-hop neigh. 6 3 6 6 6 6
R? validation 0.748 0.991 0.496 0.759 0.924 0.463
R? test 0.815 0.993 0.445 0.763 0.906 0.468

Kerimov, Bulat, et al. "Assessing the performances and transferability of graph neural network
metamodels for water distribution systems." Journal of Hydroinformatics 25.6 (2023): 2223-2234.
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