

DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds

Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt

Computer Graphics and Visualization, TU Delft

Lots of data on curved surfaces

2 **T**UDelft

Neural networks on images

³ **TU**Delft

Applications for learning on surfaces

Segmentation [Maron et al. 2017]

Optimize kernel weights

- + Weight sharing (efficient)
- + Translation invariance

CNNs fit the data

Cactus courtesy of Sketchfab user vvc

Temperature

from Climate Reanalyzer (https://ClimateReanalyzer.org), Climate Change Institute, University of Maine, USA

Convolutions on surfaces

From 2D to 3D intrinsically

Intrinsic

- + Robust to isometric deformations
- + 2D instead of 3D
- + No/less distortion or occlusion

Learning on surfaces 101

S

- Convert mesh/point cloud to graph
- Vertices are nodes
- Edges to 1-ring (mesh) or neighborhood

Graph-based learning

• GCN – Graph Laplacian

$$x'_i = \sigma(W_0 x_i + \sum_{j \in N_i} \frac{1}{c_{ij}} W_1 x_j)$$

[Kipf and Welling, 2016]

Graph-based learning

- Graph- and point based
 - GCN, PointNet++

$$x_i' = \max_{\substack{j \in N_i}} h_\theta(x_j)$$

[Qi et al., 2017]

Graph-based learning

• GCN, PointNet++, EdgeConv

$$x'_i = \max_{j \in N_i} h_{\theta}(x_i, x_j - x_i)$$

[Wang et al., 2019]

Our world is anisotropic

- Ridges, edges, corners
- Have a direction
 - a.k.a. they are anisotropic
- Anisotropic convolutions

Image CNNs can use a global coordinate system

18

G

How does an image CNN use coordinates?

19 **TUDelft**

How does an image CNN use coordinates?

20 **TUDelft**

Surfaces have no global coordinate system

21

G

What did others do?

- Graph- and point based
 - GCN, PointNet++, EdgeConv
- 3D kernel (extrinsic)
 - KPConv, MinkowskiNet, SSCN

KPConv [Thomas et al. 2019]

What did others do?

- Graph- and point based
 - GCN, PointNet++, EdgeConv
- 3D kernel (extrinsic)
 - KPConv, MinkowskiNet, SSCN
- 2D kernels on surfaces (intrinsic)
 - GCNN, ACNN, MoNet, MDGCNN, HSN

 $R(\mathbf{r})e^{i\beta}$

 $R(r)e^{i(\theta+\beta)}$

Rotation equivariant

Rotation invariant

Harmonic Surface Networks

25 **TUDelft**

Limitations

- Requires a good exponential map (can be expensive to compute, tricky)
- Circular harmonics are expensive to evaluate
- Can we simplify?

DeltaConv

SIGGRAPH 2022

Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt

Laplacians in Geometric Deep Learning

- GCN Graph Laplacian
- DiffusionNet Laplace-Beltrami

$$x'_i = \sigma(W_0 x_i + \sum_{j \in N_i} \frac{1}{c_{ij}} W_1 x_j)$$

[Kipf and Welling, 2016]

Coordinate-independent

Isotropic

TUDelf

Making the Laplacian anisotropic

Laplacian

- Sum of second derivatives
 - Discrete setting: Difference to average of neighbors
- Used in many applications
 - Harmonic functions $\Delta y = 0$
 - Heat equation $\frac{\partial y}{\partial t} = \Delta y$
 - Spectral analysis (eigendecomposition)
- Isotropic

Gradient, co-gradient

- Largest rate of change + direction
- Co-gradient
- On surfaces: tangential

TUDelft

Divergence, curl

div Sinks and sources

curl Vortices

32 **TUDelft**

S

Making the Laplacian anisotropic

Scalar and vector streams

34 **TUDelft**

Vectors

DeltaConv combines and composes operators

39 **TU**Delft

G

Properties of DeltaConv

• Anisotropic diffusion [Perona-Malik, 1987]

$$\frac{\partial y}{\partial t} = \nabla \cdot (c(|\nabla y|) \nabla y)$$

• Anisotropic diffusion [Perona-Malik, 1987]

$$\frac{\partial y}{\partial t} = \nabla \cdot \left(c(|\nabla y| \nabla y) \right)$$

• Anisotropic diffusion [Perona-Malik, 1987]

• Anisotropic diffusion [Perona-Malik, 1987]

$$\frac{\partial y}{\partial t} = \nabla \cdot \left[c(|\nabla y|) \nabla y \right]$$

• Anisotropic diffusion [Perona-Malik, 1987]

$$\frac{\partial y}{\partial t} = \nabla \cdot (c(|\nabla y|) \nabla y)$$

• Solve by explicit integration over time

1 step

5 steps

10 steps

20 steps

40 steps

DeltaConv combines and composes operators

G

Ablations Perona-Malik

20 timesteps

TUDelft

DeltaConv can control anisotropic diffusion time

DeltaConv benefits from geometric operators

- All operators are **intrinsic**
- All operators are **coordinate-independent**
- All operators are **generalizable**
 - Hyperbolic space, higher dimensions
- All operators are available for **different discretizations**
 - In paper: images, point clouds

Experiments

Comparisons – Point Clouds

ModelNet40

Segmentation ShapeNet

Classification ScanObjectNN

Comparisons

		-			
	Classification ModelNet40		Segmentation ShapeNet	Classification ScanObjectNN	
Method	Mean Class Acc.	Overall Acc.	Mean inst. mIoU	Accuracy	
PointNet++	-	90.7	85.1	77.9	
DGCNN	90.2	92.9	85.2	78.1	
KPConv rigid	-	92.9	86.4	-	
PointTransformer	90.6	93.7	86.6	-	
GBNet	91.0	93.8	-	80.5	
CurveNet	-	93.8	86.8	-	
DeltaNet (ours)	91.2	93.8	86.6	84.7	
Delta-U-ResNet(ours)	-	-	86.9		

More comparisons and citations in paper

TUDelft

Ablations vector stream

			Classification ModelNet40		Segmentation ShapeNet
Scalar convolution	Vector stream	Increased params	Mean Class Acc.	Overall Accuracy	Mean inst. mIoU
Laplace-Beltrami	-	_	86.1	90.4	82.5
GCN	-	-	87.3	90.4	81.1
Max aggregation	-	-	89.2	92.2	85.7

ŤUDelft

Ablations speed

- Compare with EdgeConv (no dynamic graph)
- Points instead of edge-based features
 - K times more MLP computations (e.g., k=20)

Classification	
ModelNet40	

Convolution	Data Transforms	Training	Backward	Inference
EdgeConv	k-nn	196ms	147ms	186ms
DeltaConv (lapl.)	k-nn + ops	80ms	5ms	80ms
DeltaConv	k-nn + ops	130ms	60ms	125ms

Conclusion

S

- Intrinsic anisotropic convolutions are challenging on surfaces
- DeltaConv combines and composes geometric operators
- Intrinsic max Sca Anisotrc Easy to u co-grad Builds on Ve

Try DeltaConv yourself

github.com/**rubenwiersma/deltaconv**

\$pp install deltaconv

Thank you!

