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Lots of data on curved surfaces
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Aneurysm data
[Lawonn et al. 2019]

S3DIS
[Armeni et al. 2017]

Spot
Keenan Crane



Neural networks on images
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CNNs

?
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Correspondence
FAUST [Bogo et al. 2014]

Applications for learning on surfaces

Classification
SHREC [Lian et al. 2011]

Segmentation [Maron et al. 2017]



CNNs fit the data
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Optimize kernel weights

+ Weight sharing (efficient)
+ Translation invariance

CNNs fit the data



We want the same for surfaces
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Cactus courtesy of Sketchfab user vvc



We want the same for surfaces
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Ridges



We want the same for surfaces
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Corners



We want the same for surfaces
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Patterns



We want the same for surfaces
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Color

Temperature
from Climate Reanalyzer (https://ClimateReanalyzer.org),

Climate Change Institute, University of Maine, USA



We want the same for surfaces
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Convolutions
on surfaces



Intrinsic
+ Robust to isometric deformations

+ 2D instead of 3D

+ No/less distortion or occlusion
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Extrinsic
IntrinsicA

B

From 2D to 3D 
intrinsically



Learning on surfaces 101

• Convert mesh/point cloud to graph

• Vertices are nodes

• Edges to 1-ring (mesh) or neighborhood
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Graph-based learning

• Graph- and point based
• GCN – Graph Laplacian
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𝑥𝑖
′ = 𝜎(𝑊0𝑥𝑖 + ෍

𝑗∈𝑁𝑖

1

𝑐𝑖𝑗
𝑊1𝑥𝑗)

[Kipf and Welling, 2016]



Graph-based learning

• Graph- and point based
• GCN, PointNet++
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𝑥𝑖
′ = max

𝑗∈𝑁𝑖

ℎ𝜃(𝑥𝑗)

[Qi et al., 2017]



Graph-based learning

• Graph- and point based
• GCN, PointNet++, EdgeConv
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𝑥𝑖
′ = max

𝑗∈𝑁𝑖

ℎ𝜃(𝑥𝑖 , 𝑥𝑗 − 𝑥𝑖)

[Wang et al., 2019]



Our world is anisotropic

• Ridges, edges, corners

• Have a direction
• a.k.a. they are anisotropic

• Anisotropic convolutions
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Image CNNs can use a global coordinate system
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How does an image CNN use coordinates?
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How does an image CNN use coordinates?
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+



Surfaces have no global coordinate system
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What did others do?

• Graph- and point based
• GCN, PointNet++, EdgeConv

• 3D kernel (extrinsic)
• KPConv, MinkowskiNet, SSCN
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KPConv
[Thomas et al. 2019]



What did others do?

• Graph- and point based
• GCN, PointNet++, EdgeConv

• 3D kernel (extrinsic)
• KPConv, MinkowskiNet, SSCN

• 2D kernels on surfaces (intrinsic)
• GCNN, ACNN, MoNet, MDGCNN, HSN
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𝑅 𝑟 𝑒𝑖𝛽 𝑅 𝑟 𝑒𝑖 𝜃+𝛽

Rotation invariant Rotation equivariant



Harmonic Surface Networks
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Parallel transport



Limitations

• Requires a good exponential map (can be expensive to compute, tricky)

• Circular harmonics are expensive to evaluate

• Can we simplify?
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Laplacians in Geometric Deep Learning

• GCN – Graph Laplacian

• DiffusionNet – Laplace-Beltrami
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𝑥𝑖
′ = 𝜎(𝑊0𝑥𝑖 + ෍

𝑗∈𝑁𝑖

1

𝑐𝑖𝑗
𝑊1𝑥𝑗)

[Kipf and Welling, 2016]

IsotropicCoordinate-independent



Making the Laplacian anisotropic

Scalars

Vectors

grad       co-grad div         curl, norm

Non-linearity



Laplacian

• Sum of second derivatives
• Discrete setting: Difference to average of neighbors

• Used in many applications
• Harmonic functions Δ𝑦 = 0

• Heat equation 𝜕𝑦
𝜕𝑡

= Δ𝑦

• Spectral analysis (eigendecomposition)

• Isotropic
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Gradient, co-gradient

• Largest rate of change + direction 

• Co-gradient

• On surfaces: tangential
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div Sinks and sources
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curl Vortices

Divergence, curl



Making the Laplacian anisotropic

Scalars

Vectors

grad       co-grad div         curl, norm

Non-linearity



Scalar and vector streams
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Scalars

Vectors

div         curl, normgrad       co-grad



Building a feed-forward neural network
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0.9

0.6

0.3

0.2
Cin

⋮

Scalars

Vectors



Building a feed-forward neural network
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Scalars

Vectors

Cin

⋮

Cin

Gradient is coordinate-independent



Building a feed-forward neural network
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Cin

Cin

Scalars

Vectors



Building a feed-forward neural network
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Cin

Cin

Cout

Coutθ

θ

MLP Weighted sum, non-linearity, repeat

Vector MLP Weights and sums vectors, non-linearity on norms

Scalars

Vectors



DeltaConv combines and composes operators
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div         curl, normgrad       co-grad

Cin

Cin

Cout

Coutθ

θ

Hodge-Laplacian, Identity

max
θ

+

Scalars

Vectors



Properties of DeltaConv



Anisotropy?

• Anisotropic diffusion [Perona-Malik, 1987]

𝜕𝑦

𝜕𝑡
= ∇ ⋅ (𝑐( ∇𝑦 )∇𝑦)
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Anisotropy?

• Anisotropic diffusion [Perona-Malik, 1987]

𝜕𝑦

𝜕𝑡
= ∇ ⋅ (𝑐( ∇𝑦 )∇𝑦)
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Anisotropy?

• Anisotropic diffusion [Perona-Malik, 1987]

𝜕𝑦

𝜕𝑡
= ∇ ⋅ (𝑐( ∇𝑦 )∇𝑦)
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Anisotropy?

• Anisotropic diffusion [Perona-Malik, 1987]

𝜕𝑦

𝜕𝑡
= ∇ ⋅ (𝑐( ∇𝑦 )∇𝑦)
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Anisotropy?

• Anisotropic diffusion [Perona-Malik, 1987]

𝜕𝑦

𝜕𝑡
= ∇ ⋅ (𝑐( ∇𝑦 )∇𝑦)

• Solve by explicit integration over time
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Anisotropy?
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1 step 5 steps 10 steps 20 steps 40 steps

Astronaut image courtesy NASA



DeltaConv combines and composes operators
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div         curl, normgrad       co-grad

Cin

Cin

Cout

Coutθ

θ

Hodge-Laplacian, Identity

max
θ

+

Scalars

Vectors



Ablations Perona-Malik
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20 timesteps



DeltaConv can control anisotropic diffusion time
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DeltaConv benefits from geometric operators

• All operators are intrinsic

• All operators are coordinate-independent

• All operators are generalizable
• Hyperbolic space, higher dimensions

• All operators are available for different discretizations
• In paper: images, point clouds
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Experiments



Comparisons – Point Clouds

52

Classification
ModelNet40

Segmentation
ShapeNet

Classification
ScanObjectNN



Mean Class Acc. Overall Acc.

- 90.7

90.2 92.9

- 92.9

90.6 93.7

91.0 93.8

- 93.8

91.2 93.8

- -

Comparisons
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Mean inst. mIoU

85.1

85.2

86.4

86.6

-

86.8

86.6

86.9

Method

PointNet++

DGCNN

KPConv rigid

PointTransformer

GBNet

CurveNet

DeltaNet (ours)

Delta-U-ResNet(ours)

More comparisons and citations in paper

Accuracy

77.9

78.1

-

-

80.5

-

84.7

Classification
ModelNet40

Segmentation
ShapeNet

Classification
ScanObjectNN



Ablations vector stream
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Scalar 
convolution

Vector 
stream

Increased 
params

Mean Class 
Acc.

Overall 
Accuracy

Mean inst. 
mIoU

Laplace-Beltrami - - 86.1 90.4 82.5

- ✓ 87.1 90.6 82.5

✓ - 89.4 92.2 84.9

GCN - - 87.3 90.4 81.1

- ✓ 87.3 90.8 81.2

✓ - 90.6 92.8 85.1

Max aggregation - - 89.2 92.2 85.7

- ✓ 89.5 92.6 85.7

✓ - 91.2 93.8 86.1

Classification
ModelNet40

Segmentation
ShapeNet



Ablations speed

• Compare with EdgeConv (no dynamic graph)

• Points instead of edge-based features
• K times more MLP computations (e.g., k=20)

55

Convolution Data 
Transforms

Training Backward Inference

EdgeConv k-nn 196ms 147ms 186ms

DeltaConv (lapl.) k-nn + ops 80ms 5ms 80ms

DeltaConv k-nn + ops 130ms 60ms 125ms

Classification
ModelNet40



• Intrinsic anisotropic convolutions are challenging on surfaces

• DeltaConv combines and composes geometric operators
• Intrinsic

• Anisotropic

• Easy to use and efficient

• Builds on foundations in geometry

Conclusion
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Try DeltaConv yourself

 github.com/rubenwiersma/deltaconv

$ pip install deltaconv

  graphics.tudelft.nl

57



Thank you!
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