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Lots of data on curved surfaces

S3DIS

[Armeni et al. 2017]

Spot

Keenan Crane

Aneurysm data
[Lawonn et al. 2019]
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Neural networks on images

‘ CNNs
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Applications for learning on surfaces
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Classification
SHREC [Lian et al. 2011]

Correspondence
FAUST [Bogo et al. 2014]

Segmentation [Maron et al. 2017] P
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CNNis fit the data

L1 1 |

Weight sharing (efficient)
Translation invariance

fit the data
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We want the same for surfaces

Cactus courtesy of Sketchfab user vvc
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We want the same for surfaces

Ridges
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We want the same for surfaces
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We want the same for surfaces

Patterns

=\
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We want the same for surfaces

Temperature

from Climate Reanalyzer (https://ClimateReanalyzer.org),
Climate Change Institute, University of Maine, USA
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We want the same for surfaces

Convolutions
on surfaces
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From 2D to 3D
intrinsically
Extrinsic
Intrinsic A ic

+ Robust to isometric deformations
+ 2D instead of 3D

+ No/less distortion or occlusion
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Learning on surfaces 101

* Convert mesh/point cloud to graph
* Vertices are nodes

* Edges to 1-ring (mesh) or neighborhood
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Graph-based learning

* Graph- and point based
* GCN - Graph Laplacian

CU

[Kipf and Welling, 2016]
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Graph-based learning

* Graph- and point based
* GCN, PointNet++

x; = maxfg (x;)

[Qi et al., 2017]
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Graph-based learning

* Graph- and point based
* GCN, PointNet++, EdgeConv

[Wang et al., 2019]
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Our world is anisotropic

* Ridges, edges, corners

e Have a direction

* a.k.a. they are anisotropic

* Anisotropic convolutions
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Image CNNs can use a global coordinate system

L
S
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How does an image CNN use coordinates?
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How does an image CNN use coordinates?

]
20 TUDelft



Surfaces have no global coordinate system
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What did others do?

* Graph- and point based
* GCN, PointNet++, EdgeConv

* 3D kernel (extrinsic)
* KPConv, MinkowskiNet, SSCN

KPConv

[Thomas et al. 2019]
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What did others do? &

* Graph-and point based
y
* GCN, PointNet++, EdgeConv T

* 3D kernel (extrinsic)

* KPConv, MinkowskiNet, SSCN

* 2D kernels on surfaces (intrinsic)
* GCNN, ACNN, MoNet, MDGCNN, HSN

<
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Harmonic Surface Networks

Rotation-invariant
vector features

vector featuses

Parallel transport
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Limitations

* Requires a good exponential map (can be expensive to compute, tricky)
* Circular harmonics are expensive to evaluate

* Can we simplify?

]
TUDelft



DeltaConv

Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt
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Laplacians in Geometric Deep Learning

* GCN - Graph Laplacian

* DiffusionNet - Laplace-Beltrami

Z C;
i .
[Kipf and Welling, 2016]
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Making the Laplacian anisotropic

Scalars

Non-linearity J
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Laplacian

* Sum of second derivatives

* Discrete setting: Difference to average of neighbors

* Used in many applications

* Harmonic functions Ay = 0

0y _
at—Ay

* Spectral analysis (eigendecomposition)

* Heat equation

* |sotropic
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Gradient, co-gradient

* Largest rate of change + direction
* Co-gradient

* On surfaces: tangential

3
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Divergence, curl

div Sinks and sources curl Vortices

N
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Making the Laplacian anisotropic

Scalars

Non-linearity J
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Scalar and vector streams

Scalars

grad ¥ co-grad div &\ curl, norm

Vectors
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Building a feed-forward neural network

Scalars

Cm

Vectors
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Building a feed-forward neural network

Vectors
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Scalars

Vectors

37
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Building a feed-forward neural network

Vectors

Vector MLP Weights and sums vectors, non-linearity on norms
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DeltaConv combines and composes operators

Scalars

grad Y co-grad div &\ curl, norm

Vectors
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Properties of DeltaConv
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Anisotropy?

* Anisotropic diffusion [Perona-Malik, 1987]

0
V- (c(lVyDVy)

3
o | FuDelft



Anisotropy?

* Anisotropic diffusion [Perona-Malik, 1987]

Y v vyl
5 =V c(wylvy;
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Anisotropy?

* Anisotropic diffusion [Perona-Malik, 1987]

dy
—_— = . /
5 V-(c(|VyDHVy)
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Anisotropy?

* Anisotropic diffusion [Perona-Malik, 1987]

5 c(IVyDVy)
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Anisotropy?

* Anisotropic diffusion [Perona-Malik, 1987]

5‘y_v Vy|)V
=== V- (c(vyDvy)

* Solve by explicit integration over time
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Anisotropy?

i ]
Astronaut image courtesy NASA s | TUDelft



DeltaConv combines and composes operators

Scalars

Vectors
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Ablations Perona-Malik

20 timesteps
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DeltaConv can control anisotropic diffusion time
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DeltaConv benefits from geometric operators

All operators are intrinsic

All operators are coordinate-independent

All operators are generalizable

* Hyperbolic space, higher dimensions

* All operators are available for different discretizations

* |In paper: images, point clouds
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Experiments
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Comparisons - Point Clouds

Classification Segmentation Classification
ModelNet40 ShapeNet ScanObjectNN
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Comparisons

Method
PointNet++
DGCNN

KPConv rigid
PointTransformer
GBNet

CurveNet
DeltaNet (ours)

Delta-U-ResNet(ours)

Classification
ModelNet40

Mean Class Acc.

90.2

90.6
91.0

91.2

More comparisons and citations in paper

Overall Acc.

90.7
92.9
92.9
93.7
93.8
93.8
93.8

Segmentation
ShapeNet

Mean inst. mloU
85.1

85.2

36.4

86.6

86.8

86.6

86.9

Classification
ScanObjectNN

Accuracy
7.9
78.1

80.5

84.7
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Ablations vector stream

Scalar
convolution

Laplace-Beltrami

GCN

Max aggregation

Vector
stream

Increased
params

Classification

_+j ModelNet40

Mean Class
Acc.

86.1

87.3

89.2

Overall
Accuracy

90.4

90.4

92.2

Segmentation
ShapeNet

Mean inst.
miol

82.5

31.1

85.7
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Ablations speed

* Compare with EdgeConv (no dynamic graph)

* Points instead of edge-based features

* Ktimes more MLP computations (e.g., k=20)

i Classification
'] ModelNet40

Convolution Data Training Backward
Transforms

EdgeConv k-nn 196ms 147ms

DeltaConv (lapl.) k-nn + ops 80ms 5ms

DeltaConv k-nn + ops 130ms 60ms

Inference

186ms
80ms
125ms
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]
TUDelft



Conclusion

* Intrinsic anisotropic convolutions are challenging on surfaces

DeltaConv combines and composes geometric operators

* Intrinsic
Sc{
* Anisotrec e
= gjie
* Easytou L 4 XE
| I L .A. 1
* Buildson Y L
X
HEE ‘
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Try DeltaConv yourself
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Thank you!
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