Inferring Time-Varying Signals over Uncertain Graphs

Mohammad Sabbaqi and Elvin Isufi {m.sabbaqi, e.isufi-1}@tudelft.nl

TU Delft

June 25, 2024

ICASSP 2024

Multivariate Time Series over Networks

Brain recordings

Financial networks

Water networks

▶ Data have now a spatial dependency and a temporal dependency

Graphs for Multivariate Time Series

▶ Graphs can be used to model multivariate time series

- \Rightarrow The structure is a graph
- ⇒ Time series are time-varying data assigned to the nodes

Graphs for Multivariate Time Series

- ▶ Graphs can be used to model multivariate time series
	- \Rightarrow The structure is a graph
	- \Rightarrow Time series are time-varying data assigned to the nodes

- \triangleright Nodes: junctions/sources in the city $\mathcal V$
- \triangleright Edges: pipes connecting the junctions $\mathcal E$
- ▶ Data: recorded pressure in each junction varying by time

 \Rightarrow **x**_t over the graph $\mathcal{G} = \{V, \mathcal{E}\}$ Shift op. (**A** or **L**)

State Space Model for Time-Varying Graph Signals equations

$$
\begin{cases} \mathbf{x}_t = g(\mathbf{L}, \mathbf{x}_{t-1}) + \mathbf{w}_{t-1} & \to \text{state equation} \\ \mathbf{y}_t = f_t(\mathbf{L}, \mathbf{x}_t) + \mathbf{v}_t & \to \text{observation equation} \end{cases}
$$

Observation Model: Graph Filter

- \triangleright We consider a graph filter at each time t for observation model
- \blacktriangleright Graph filter: shift-and-sum over the graph

$$
\mathbf{y}_t = \sum_{k=0}^K h_{kt} \mathbf{L}^k \mathbf{x}_t = \mathbf{H}_t(\mathbf{L}) \mathbf{x}_t
$$

 \blacktriangleright Goal: Learn h_{kt} to have a simple evolution in the state.

State Equation: Stochastic PDE over Graphs

- ▶ Strict PDE in the state: $H_t(L)$ might not exist
	- \Rightarrow Hence, we allow some uncertainty in the state equation

State Equation: Stochastic PDE over Graphs

▶ Strict PDE in the state: $H_t(L)$ might not exist

 \Rightarrow Hence, we allow some uncertainty in the state equation

 $d\mathbf{x}_t = -c\mathbf{L}\mathbf{x}_t dt + \mathbf{S}d\mathbf{\beta}_t$

- \blacktriangleright $\beta_t \in \mathbb{R}^F$ is a standard Wiener process (a.k.a Brownian motion)
- \blacktriangleright **S** $\in \mathbb{R}^{N \times F}$ is the dispersion matrix

State Equation: Stochastic PDE over Graphs

▶ Strict PDE in the state: $H_t(L)$ might not exist

 \Rightarrow Hence, we allow some uncertainty in the state equation

 $d\mathbf{x}_t = -c\mathbf{L}\mathbf{x}_t dt + \mathbf{S}d\mathbf{\beta}_t$

- \blacktriangleright $\beta_t \in \mathbb{R}^F$ is a standard Wiener process (a.k.a Brownian motion)
- \blacktriangleright **S** $\in \mathbb{R}^{N \times F}$ is the dispersion matrix

 \triangleright Goal: Learn $S \rightarrow$ has too many parameters

 \Rightarrow We parameterize it by graph structure

$$
\mathbf{S} = \mathbf{B}\text{diag}(\boldsymbol{\alpha}) \longrightarrow d\mathbf{x}_t = -c\mathbf{L}\mathbf{x}_t dt + \mathbf{B}\text{diag}(\boldsymbol{\alpha})d\boldsymbol{\beta}_t
$$

 \triangleright **B** is the incidence matrix

 \blacktriangleright Continuous-discrete state space model:

$$
\begin{cases} d\mathbf{x}_t = -c\mathbf{L}\mathbf{x}_t dt + \mathbf{B}\text{diag}(\boldsymbol{\alpha})d\boldsymbol{\beta}_t \\ \mathbf{y}_t = \mathbf{H}_t(\mathbf{L})\mathbf{x}_t + \mathbf{v}_t \end{cases}
$$

▶ Continuous-discrete state space model:

$$
\begin{cases} d\mathbf{x}_t = -c\mathbf{L}\mathbf{x}_t dt + \mathbf{B}\text{diag}(\boldsymbol{\alpha})d\boldsymbol{\beta}_t \\ \mathbf{y}_t = \mathbf{H}_t(\mathbf{L})\mathbf{x}_t + \mathbf{v}_t \end{cases}
$$

- ▶ initial state value: $\mathbf{x}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$
- ▶ noise energy: $\mathbb{E}[**v**_k **v**_k^T] = σ²**I**$

▶ Continuous-discrete state space model:

$$
\begin{cases} d\mathbf{x}_t = -c\mathbf{L}\mathbf{x}_t dt + \mathbf{B}\text{diag}(\boldsymbol{\alpha})d\boldsymbol{\beta}_t \\ \mathbf{y}_t = \mathbf{H}_t(\mathbf{L})\mathbf{x}_t + \mathbf{v}_t \end{cases}
$$

- ▶ initial state value: $\mathbf{x}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$
- ▶ noise energy: $\mathbb{E}[**v**_k **v**_k^T] = σ²**I**$
- ▶ Inference problem:
	- \Rightarrow given: temporal observations y_1, \ldots, y_T
	- \Rightarrow goal: estimate parameters α and h_{kt} 's

▶ Continuous-discrete state space model:

$$
\begin{cases} d\mathbf{x}_t = -c\mathbf{L}\mathbf{x}_t dt + \mathbf{B}\text{diag}(\boldsymbol{\alpha})d\boldsymbol{\beta}_t \\ \mathbf{y}_t = \mathbf{H}_t(\mathbf{L})\mathbf{x}_t + \mathbf{v}_t \end{cases}
$$

- ▶ initial state value: $\mathbf{x}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$
- ▶ noise energy: $\mathbb{E}[**v**_k **v**_k^T] = σ²**I**$
- ▶ Inference problem:
	- \Rightarrow given: temporal observations y_1, \ldots, y_T
	- \Rightarrow goal: estimate parameters α and h_{kt} 's
- ▶ Approach:
- Discretization of state
- 2. Recovering the state
- 3. Estimating model parameters

Step1: Discretization of Continuous State

▶ Using the transition matrix of an LTI-SPDE:

$$
\mathbf{x}_{t + \triangle t} = \tilde{\mathbf{L}} \mathbf{x}_t + \mathbf{q}_t
$$

with:

$$
\mathbf{q}_{k} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})
$$

$$
\tilde{\mathbf{L}} = \exp(-c\triangle t\mathbf{L})
$$

$$
\mathbf{Q} = \int_{0}^{\triangle t} e^{-c\mathbf{L}(\triangle t - s)} \mathbf{B} \text{diag}^{2}(\alpha) \mathbf{B}^{\top} e^{-c\mathbf{L}(\triangle t - s)} ds
$$

Step1: Discretization of Continuous State

▶ Using the transition matrix of an LTI-SPDE:

$$
\mathbf{x}_{t + \triangle t} = \tilde{\mathbf{L}} \mathbf{x}_t + \mathbf{q}_t
$$

with:

$$
\mathbf{q}_{k} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})
$$

$$
\tilde{\mathbf{L}} = \exp(-c\Delta t \mathbf{L})
$$

$$
\mathbf{Q} = \int_{0}^{\Delta t} e^{-c\mathbf{L}(\Delta t - s)} \mathbf{B} \text{diag}^{2}(\alpha) \mathbf{B}^{\top} e^{-c\mathbf{L}(\Delta t - s)} ds
$$

▶ With first-order Taylor approximation:

 $\tilde{\mathbf{L}} \approx \mathbf{I} - c\triangle t\mathbf{L}$ $\mathbf{Q} \approx \triangle t \mathbf{B} \text{diag}^2(\boldsymbol{\alpha}) \mathbf{B}^\top$

Step2: Recovering the State Kalman-Bucy filtering/smoothing

- \triangleright Given model parameters α and H_t : state recovery via Kalman filtering
	- \Rightarrow optimum Bayesian solution (recursive closed form \rightarrow linear complexity in time)

Step2: Recovering the State Kalman-Bucy filtering/smoothing

 \triangleright Given model parameters α and H_t : state recovery via Kalman filtering

 \Rightarrow optimum Bayesian solution (recursive closed form \rightarrow linear complexity in time)

prediction step: $\mathbf{x}_t^{t-1} = \tilde{\mathbf{L}} \mathbf{x}_{t-1}^{t-1};$ $\mathbf{P}_{t}^{t-1} = \tilde{\mathbf{L}} \mathbf{P}_{t-1}^{t-1} \tilde{\mathbf{L}} + \mathbf{B} \text{diag}^2(\boldsymbol{\alpha}) \mathbf{B}^\top;$ correction step: $\mathbf{K}_t = \mathbf{P}_t^{t-1} \mathbf{H}_t^\top (\mathbf{H}_t \mathbf{P}_t^{t-1} \mathbf{H}_t^\top + \sigma^2 \mathbf{I})^{-1}$ $\mathbf{x}_t^t = \mathbf{x}_t^{t-1} + \mathbf{K}_t(\mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t^{t-1});$ $\mathbf{P}_t^t = \mathbf{P}_t^{t-1} - \mathbf{K}_t \mathbf{P}_t^{t-1} \mathbf{K}_t^{\top};$

- \triangleright **K**_t is the Kalman gain
- ▶ $(\mathbf{y}_t \mathbf{H}_t \mathbf{x}_t^{t-1})$ is the prediction error
- \blacktriangleright **P**_t is the covariance matrix of the state at time t

Step3: Estimating Model Parameters a maximum a priori approach

▶ Having the state via Kalman filter \rightarrow likelihood on the observation \Rightarrow can be even computed recursively!

$$
\mathcal{L}_t(\boldsymbol{\alpha}, \mathbf{h}_t) = \mathcal{L}_{t-1}(\boldsymbol{\alpha}, \mathbf{h}_t) + \frac{1}{2} \log |\mathbf{S}_t|
$$

+ $\frac{1}{2} (\mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t^{t-1})^\top \mathbf{S}_t^{-1} (\mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t^{t-1})$

where: $\mathbf{S}_t = \mathbf{H}_t \mathbf{P}_t^{t-1} \mathbf{H}_t^\top + \sigma^2 \mathbf{I}$

Step3: Estimating Model Parameters a maximum a priori approach

▶ Having the state via Kalman filter \rightarrow likelihood on the observation

 \Rightarrow can be even computed recursively!

$$
\mathcal{L}_t(\boldsymbol{\alpha}, \mathbf{h}_t) = \mathcal{L}_{t-1}(\boldsymbol{\alpha}, \mathbf{h}_t) + \frac{1}{2} \log |\mathbf{S}_t|
$$

+ $\frac{1}{2} (\mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t^{t-1})^\top \mathbf{S}_t^{-1} (\mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t^{t-1})$

where: $\mathbf{S}_t = \mathbf{H}_t \mathbf{P}_t^{t-1} \mathbf{H}_t^\top + \sigma^2 \mathbf{I}$

▶ error matters more when confidence is high!

- **▶ no l₂-norm risk anymore** \rightarrow **covariance-based norm replaced**
- ▶ gradient descent and inference is over!

Experiments

▶ Datasets:

- \Rightarrow Synthetic data: based on presented state space model (200 nodes, 10000 samples)
- ⇒ Weather data: NOAA (109 nodes, ∼8500 samples)
- ⇒ Traffic data: METR-LA (207 nodes, ∼28000 samples)

Experiments

▶ Datasets:

- \Rightarrow Synthetic data: based on presented state space model (200 nodes, 10000 samples)
- ⇒ Weather data: NOAA (109 nodes, ∼8500 samples)
- ⇒ Traffic data: METR-LA (207 nodes, ∼28000 samples)

 \blacktriangleright Tasks:

- ⇒ Interpolation: randomly removing data over nodes at each time
- \Rightarrow Extrapolation: forecasting time series, using state equation

Interpolation data imputation

Table: Interpolation task performance for both synthetic and weather temperature dataset. The experiments are performed based on different portions of unobserved data.

Figure. Traffic forecasting performance in rNMSE for proposed models with different prediction horizons.

Thanks for your attention!

