Identification of Networks ofDynamic Systems

Michel Verhaegen

Delft Center for Systems and Control

Delft University of Technology

Content

1. **Three parts based on recent book**

Based on Cambridge University Press 2022

M.Verhaegen,Chengpu Yu and Baptiste Sinquin: "Data-Driven Identification of Networks of Dynamic Systems"

 $\widetilde{\mathbf{T}}$ UDelft

3

Content

- 1. **Part 1:** Parametrization Large-Scale Dynamic Networks
- 2. **Part 2:** Identification methods
- 3. **Part 3:** Towards Control of Large-Scale Adaptive Optics**Systems**

5

An example of Large Scale Dynamic Systems

6

An example of Large Scale Dynamic Systems

ELT (XL-Telescope) :

1. Primary Mirror: Segmented — 798hexagonal segments (39m ∅)

Delft Center for Systems and Control

An example of Large Scale Dynamic Systems

ELT (XL-Telescope) :

- 1. Primary Mirror: Segmented 798hexagonal segments (39m ∅)
- 2. M4 Adaptive Mirror: ⁸⁰⁰⁰ actuators (2.4 m ∅).

3.· <u>· · · ·</u>
————

Many More Examples of Large Scale Networks of Dynamic System

- 1. Active Boundary Layer Control
- 2. Formation Flying of satellites
- 3. Cellular Network dynamics in diseases

4. \cdot \cdot \cdot

Part 1: Parametrization Large-ScaleDynamic Networks

8

Content on Parametrization

- 1. Transfer Function models
- 2. Structured State Space models
- 3. etc.

Part 1a: Transfer Function Models

10

Content for Parametrizing Transfer Funct

- 1. Use of Graphs to define sparse (transfer function) matrices.
- 2. **Kronecker-Based VAR (Quarks) models**
- 3. Tensor VAR models
- 4. etc.

UDelft

Need for Structural Model Parametrization

Given ^a MIMO system modeled as:

 $y(k) = G(q)u(k) + H(q)e(k)$

with $y(k)\in\mathbb{R}^p, u(k)\in\mathbb{R}^m$ resp. the output and input signals of the system, and $e(k)\in\mathbb{R}^p$ a (temporally) white noise signal and

 $G(z)$ is a $p\times m$ rational function matrix (strictly) proper $H(z)$ is a $p\times p$ rational function matrix (proper)

What if p,m is of $O(10^4\,$ $^4)$?

Example of ^a sparse DNF

$$
\begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \end{bmatrix} = \begin{bmatrix} 0 & W_{12}(q) & W_{13}(q) & 0 \\ 0 & 0 & W_{23}(q) & 0 \\ W_{31}(q) & 0 & 0 & 0 \\ 0 & 0 & W_{43}(q) & W_{44}(q) \end{bmatrix} \begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \end{bmatrix} + \begin{bmatrix} V_{11}(q) & 0 & 0 & 0 \\ 0 & V_{22}(q) & 0 & 0 \\ 0 & 0 & V_{33}(q) & 0 \\ 0 & 0 & 0 & V_{44}(q) \end{bmatrix} \begin{bmatrix} u_1(k) \\ u_2(k) \\ u_3(k) \\ u_4(k) \end{bmatrix}
$$

Delft Center for Systems and Control

Example of ^a sparse DNF (Graph representation)

Sparse VAR models

Consider the 2nd-order VAR model:

 $y(k) = A_1y(k-1+A_2y(k-2)+e(k)$ e(k) \frown \bigcirc $(0, \Sigma)$ e) $K_e = \Sigma_e^{-1}$ e^{-1} $y(k) \in \mathbb{R}^p$

Then the <mark>Granger Causality</mark> graph is the mixed graph (V_{GC}, A_{GC}, E_{GC}) , with A_{GC} representing the directed edges and E_{GC} the undirected ones, is defined as follows:

> V_{GC} $\,=\,$ $\{1, \cdots, p\}$ $(i, j) \notin A_{GC} \Leftrightarrow (A_{\tau})_{ji} = 0 \ \forall \tau \in \{1, \cdots, 2\}$ $(i, j) \notin E_{GC} \Leftrightarrow K_{ij} = 0$

15

Generalized VAR(X) models

The generalized VAR model:

 A_α^G $_0^Gy(k)=A_1^G$ $^G_1y(k-1)+A^G_2$ $2^Gy(k-2)+e_0(k)\quad e(k)$ \frown $\curvearrowright (0, \Sigma_0)$ Σ_0 diagonal

with A_α^G The relation with the original VAR(X) model is that: 0 $_0^G$ lower triangular with unit entries on the diagonal.

> $\Sigma_e = (A_0^G$ $O\choose{0}^{-1}$ $^1\Sigma_0(A_0^G$ $O(5)^{-T}$

maybe full, while its inverse is sparse. This introduces sparsity in A_α^G 0 $_0^G$ and probably also in the other parameter matrices.

The class of Sum-of-Kronecker Product Matrices

Definition: The class of sum-of-Kronecker product matrices isdefined as:

$$
\mathcal{K}_{2,r} = \{ M \in \mathbb{R}^{m_1 m_2 \times n_1 n_2} \ | M = \sum_{i=1}^r M_{i,2} \otimes M_{i,1} \}
$$

for $\text{ for } \; M_{i,1} \in \mathbb{R}^{m_1}$ $M_{i,2}$ will be called the factor ma $\times n$ $^{1},M_{i,2}\in\mathbb{R}^{m_{2}}$ $\times n$ 2 . The matrices $M_{i,1}$ $_1$ and $_{\rm 2}$ will be called the factor matrices.

The class of Sum-of-Kronecker Product Matrices

Definition: The class of sum-of-Kronecker product matrices isdefined as:

$$
\mathcal{K}_{2,r} = \{ M \in \mathbb{R}^{m_1 m_2 \times n_1 n_2} \ | M = \sum_{i=1}^r M_{i,2} \otimes M_{i,1} \}
$$

for $\text{ for } \; M_{i,1} \in \mathbb{R}^{m_1}$ $M_{i,2}$ will be called the factor ma $\times n$ $^{1},M_{i,2}\in\mathbb{R}^{m_{2}}$ $\times n$ 2 . The matrices $M_{i,1}$ $_1$ and $_{\rm 2}$ will be called the factor matrices.

Definition: [Kronecker rank] A matrix within $\mathcal{K}_{2,r}$ has Kronecker rank r when the following two matrices with r columns, which each column a vectorization of the matrices $M_{i,1}$ $_1$ and $M_{i,2}$ respectively denoted as,

$$
\begin{bmatrix} \cdots & \text{vec}(M_{i,1}) & \cdots \end{bmatrix} \quad \begin{bmatrix} \cdots & \text{vec}(M_{i,2}) & \cdots \end{bmatrix} \quad \begin{bmatrix} \cdots & \text{vec}(M_{i,2}) & \cdots \end{bmatrix}
$$
 have full column rank r.

Advantages of the class $\mathcal{K}_{2,r}$

Let $x\in\mathbb{R}^{N^2}$ complexity for matrix-vector multiplication, matrix-matrix. Then, the orders of magnitude of the computational multiplication and matrix inversion are as follows:

 $A,B\in\mathbb{R}^N$ $\in \mathbb{R}^{N^2 \times N^2}$ $A, B \in \mathcal{K}$ 2 $\tilde{}$ $\tilde{}\times$ $\,N$ 2 $2,r$ Ax $\mathcal{O}(N^4$ $^{4})$ $\qquad \qquad \mathcal{O}(rN^{3})$ $^{3})$ AB ${\cal O}$ $\left($ $N \$ 6 $^6)$ ${\cal O}$ $\left($ $r\,$ 2 2N 3 $^{3)}$ $A^-\,$ 1 (case: Kronecker rank of A is 1) $\mathcal{O}(N^6$ $\mathcal{O}(N^3)$ $^{3)}$

The complexity obtained with the Kronecker-product parametriza-

tion considers the operations required for forming the factor matrices only.

The Quarks (Kronecker-based ARX) Model

The Quarks model is defined as:

$$
y(k) = \sum_{i=1}^{n} \Big(\sum_{j=1}^{r_i} M_{i,j,2} \otimes M_{i,j,1} \Big) y(k-i)
$$

Assume that $y(k) = \text{vec}(Y(k))$ for $Y(k) \in \mathbb{R}^{pN \times N}$ and using the property of the vec-operator that vec $(XYZ) = (Z^T \otimes X) \mathrm {vec}(Y)$ $^{T}\otimes X) \mathrm{vec}(Y),$ we can write the Quarks model as:

$$
Y(k) = \sum_{i=1}^{n} \sum_{j=1}^{r_i} \left(M_{i,j,1} Y(k-i) M_{i,j,2}^T \right)
$$

19

The Quarks (Kronecker-based ARX) Model

The Quarks model is defined as:

$$
y(k) = \sum_{i=1}^{n} \Big(\sum_{j=1}^{r_i} M_{i,j,2} \otimes M_{i,j,1} \Big) y(k-i)
$$

Assume that $y(k) = \text{vec}(Y(k))$ for $Y(k) \in \mathbb{R}^{pN \times N}$ and using the property of the vec-operator that vec $(XYZ) = (Z^T \otimes X) \mathrm {vec}(Y)$ $^{T}\otimes X) \mathrm{vec}(Y),$ we can write the Quarks model as:

$$
Y(k) = \sum_{i=1}^{n} \sum_{j=1}^{r_i} \left(M_{i,j,1} Y(k-i) M_{i,j,2}^T \right)
$$

19Remark: This can be generalized further by parametrizing thecoefficient matrices with Tensor calculus. See [Data-Driven Identification of Networks of Dynamic Systems, Ch. 3].

Part 1b: Parametrization StateSpace models

State Space Models

An LTI state space model is given as,:

$$
x(k+1) = Ax(k) + Bu(k)
$$

$$
y(k) = Cx(k) + v(k)
$$

for $x(k)\in\mathbb{R}^n$ **parametrization**? $^n, y(k) \in \mathbb{R}^p, u(k) \in \mathbb{R}^m$ with n, m, p of $O(10^4$ $^4), \,$ full

21

State Space Models

An LTI state space model is given as,:

$$
x(k+1) = Ax(k) + Bu(k)
$$

$$
y(k) = Cx(k) + v(k)
$$

for $x(k)\in\mathbb{R}^n$ **parametrization**? $^n, y(k) \in \mathbb{R}^p, u(k) \in \mathbb{R}^m$ with n, m, p of $O(10^4$ $^4), \,$ full

Or spatial structure imposed by "special" structure on the system matrices A,B,C ?

Parametrization of SSM

- 1. Sparsely State space models.
	- A priori parametrized
	- Decomposable systems
	- Systems with Block-Tridiagonal system matrices
- 2. Data-sparse parametrized State Space models.
	- 1D: Sequentially Semi-Seperable system matrices
	- Multi-dimensional State Space Models

Block-Triangular state space model

This is state space model of the form:

$$
\begin{cases}\nx(k+1) = Ax(k) + Bu(k) + Hu(k) \\
y(k) = Cx(k) + Du(k) + Gw(k)\n\end{cases}
$$

With the system matrices Block-Triangular. Such as,

$$
\mathcal{A} = \begin{bmatrix} A_1 & A_{1,r} & & \\ A_{2,\ell} & A_2 & \ddots & \\ & \ddots & \ddots & A_{N-1,r} \\ & & A_{N,\ell} & A_N \end{bmatrix}
$$

Example: 1D Heterogeneous DNS

Consider the network of LTI systems:

Delft Center for Systems and Control

 $\widetilde{\mathbf{T}}$ UDelft

Example: 1D Heterogeneous DNS

Consider the network of LTI systems:

where $x_i(k) \, \in \, \mathbb{R}^{n_i}, u_i(k) \, \in \, \mathbb{R}^{m_i}, y_i(k) \, \in \, \mathbb{R}^{p_i}$ and $e_i(k)$ is a zero-mean white noise

Part 2: Identification of Large-ScaleDynamic Networks

One Identification Problem

Consider a 1D-network of N dynamic systems and we zoom in on the local system Σ_i and its LOCAL neigborhood!

One Identification Problem

Consider a 1D-network of N dynamic systems and we zoom in on the local system Σ_i and its LOCAL neigborhood!

Identification problem of Identifying Local System Σ_i

Given: local input-output data of systems Σ_j for

 $j =$ $i = i - R + 2, \cdots, i + R$ with $R \ll N$

Determine: the system matrices A_i,B_i,C_i of system Σ_i

• Identify the state sequence x $R(k)$ of the lifted system of R -systems to the right of $\Sigma_i.$

With that lifted system denoted as:

$$
x^{R}(k+1) = A^{R}x^{R}(k) + B^{R}u^{R}(k)
$$

$$
+F^{R}\begin{bmatrix} x_{i}(k) \\ x_{i+R+1}(k) \end{bmatrix}
$$

$$
k) \qquad y^{R}(k) = C^{R}x^{R}(k)
$$

• Identify the state sequence x $R(k)$ of the lifted system of R -systems to the right of $\Sigma_i.$

•• Likewise of the R systems to the left of $\Sigma_{i+2}.$

• Identify the state sequence x $R(k)$ of the lifted system of R -systems to the right of $\Sigma_i.$

- •• Likewise of the R systems to the left of $\Sigma_{i+2}.$
- $x_{i+1}(k) = x$ $R(k) \bigcap x$ $^{L}(k)$

• Identify the state sequence x $R(k)$ of the lifted system of R -systems to the right of $\Sigma_i.$

- Likewise of the R systems to the left of $\Sigma_{i+2}.$
- $x_{i+1}(k) = x$ $R(k) \bigcap x$ $^{L}(k)$
- Likewise determine $x_{i-1}(k)$

27

• Identify the state sequence x $R(k)$ of the lifted system of R -systems to the right of $\Sigma_i.$

- Likewise of the R systems to the left of $\Sigma_{i+2}.$
- $x_{i+1}(k) = x$ $R(k) \bigcap x$ $^{L}(k)$
- Likewise determine $x_{i-1}(k)$
- $\bullet~$ Determine the system matrices A_i,B_i,C_i .

27

Solution to the first step

Lemma 1: When the lifted system

$$
x^{R}(k+1) = A^{R}x^{R}(k) + B^{R}u^{R}(k) + F^{R}\left[x_{i+R+1}(k)\right]
$$

$$
y^{R}(k) = C^{R}x^{R}(k)
$$

is strongly observable, i.e. the compound matrix $\left[\begin{array}{cc} C^R & \ \end{array}\right] \left[\begin{array}{cc} 0 & \ \end{array}\right]$ I I $\begin{array}{c} \end{array}$ $\, C \,$ $\,$ $\, C \,$ $\,$ ${}^{\mathcal{H}}A$ $\,$. . . $C^R(A^R)$ the *ordinary* intersection algorithm of Moonen et. al can be used s1 $\overline{}$ l l , $\sqrt{ }$ I I $\begin{array}{c} \end{array}$ 0 $C^{\bar{R}}$ $\,$ ${}^{\kappa}F$ $\,$ \cdots 0 $C^R(A^R)$ s2 $^{2}F^{R}$ R C^R R F^R $\overline{}$ l l has full rank, then to find x $^{R}(k).$

Illustration

Consider a homogeneous 1D network of 40 systems given by the following systemm matrices:

$$
A_{i} = \begin{bmatrix} 0.2728 & -0.2068 \\ 0.1068 & 0.2728 \end{bmatrix}, A_{i,i-1} = \begin{bmatrix} -0.1195 & -0.3565 \\ 0.0874 & -0.1048 \end{bmatrix}
$$

$$
A_{i,i+1} = \begin{bmatrix} 0.0699 & -0.4278 \\ 0.3842 & 0.1135 \end{bmatrix}, B_{i} = \begin{bmatrix} 0.3870 \\ -1.2705 \end{bmatrix}
$$

$$
C_{i} = \begin{bmatrix} -0.9075 & -1.3651 \end{bmatrix}
$$
 for $i = 1, \dots, 40$.

The system input in the simulation is generated randomly following the standard Gaussian distribution.

Illustration (Ct'd)

We considered $s=10$ and $R=7$ and $N_t=2000$. Further 200 Monte Carlo trials are made. The estimated poles of the systemfor $i = 20$ are:

Illustration (Ct'd)

We considered $s=10$ and $R=7$ and $N_t=8000$. Further 200 Monte Carlo trials are made. The estimated poles of the systemfor $i = 20$ are:

Part 3: Applications

32

The book is readily available

M.Verhaegen,Chengpu Yu andSinquin: **Baptiste** "Data-Driven Identification of Networks of Dynamic Systems"

AcknowledgementEU: ERC-AdvancedGrant iCON 716669

33