Identification of Networks of Dynamic Systems

Michel Verhaegen

Delft Center for Systems and Control

Delft University of Technology

Content

1. Three parts based on recent book

2

Based on Cambridge University Press 2022

M.Verhaegen, Chengpu Yu and Baptiste Sinquin: "Data-Driven Identification of Networks of Dynamic Systems"

3

Content

- 1. Part 1: Parametrization Large-Scale Dynamic Networks
- 2. Part 2: Identification methods
- 3. Part 3: Towards Control of Large-Scale Adaptive Optics Systems

5

An example of Large Scale Dynamic Systems

6

An example of Large Scale Dynamic Systems

ELT (XL-Telescope) :

 Primary Mirror: Segmented — 798 hexagonal segments (39m ∅)

Delft Center for Systems and Control

An example of Large Scale Dynamic Systems

ELT (XL-Telescope) :

- Primary Mirror: Segmented 798 hexagonal segments (39m ∅)
- M4 Adaptive Mirror: 8000 actuators (2.4 m ∅).

3. . .

Many More Examples of Large Scale Networks of Dynamic Sy

- 1. Active Boundary Layer Control
- 2. Formation Flying of satellites
- 3. Cellular Network dynamics in diseases

4. •••

Part 1: Parametrization Large-Scale Dynamic Networks

8

Content on Parametrization

- 1. Transfer Function models
- 2. Structured State Space models
- 3. etc.

Part 1a: Transfer Function Models

10

Content for Parametrizing Transfer Funct

- 1. Use of Graphs to define sparse (transfer function) matrices.
- 2. Kronecker-Based VAR (Quarks) models
- 3. Tensor VAR models
- 4. etc.

Delft

Need for Structural Model Parametrization

Given a MIMO system modeled as:

y(k) = G(q)u(k) + H(q)e(k)

with $y(k) \in \mathbb{R}^p$, $u(k) \in \mathbb{R}^m$ resp. the output and input signals of the system, and $e(k) \in \mathbb{R}^p$ a (temporally) white noise signal and

G(z) is a $p \times m$ rational function matrix (strictly) proper H(z) is a $p \times p$ rational function matrix (proper)

What if p, m is of $O(10^4)$?

Example of a sparse DNF

$$\begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \end{bmatrix} = \begin{bmatrix} 0 & W_{12}(q) & W_{13}(q) & 0 \\ 0 & 0 & W_{23}(q) & 0 \\ W_{31}(q) & 0 & 0 & 0 \\ 0 & 0 & W_{43}(q) & W_{44}(q) \end{bmatrix} \begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \end{bmatrix}$$

$$+ \begin{bmatrix} V_{11}(q) & 0 & 0 & 0 \\ 0 & V_{22}(q) & 0 & 0 \\ 0 & 0 & V_{33}(q) & 0 \\ 0 & 0 & 0 & V_{44}(q) \end{bmatrix} \begin{bmatrix} u_1(k) \\ u_2(k) \\ u_3(k) \\ u_4(k) \end{bmatrix}$$

Delft Center for Systems and Control

Example of a sparse DNF (Graph representation)

Sparse VAR models

Consider the 2nd-order VAR model:

 $y(k) = A_1 y(k-1+A_2 y(k-2)+e(k) \quad e(k) \frown (0, \Sigma_e) \quad K_e = \Sigma_e^{-1} \quad y(k) \in \mathbb{R}^p$

Then the Granger Causality graph is the mixed graph (V_{GC}, A_{GC}, E_{GC}) , with A_{GC} representing the directed edges and E_{GC} the undirected ones, is defined as follows:

 $V_{GC} = \{1, \cdots, p\}$ (i,j) $\notin A_{GC} \Leftrightarrow (A_{\tau})_{ji} = 0 \quad \forall \tau \in \{1, \cdots, 2\}$ (i,j) $\notin E_{GC} \Leftrightarrow K_{ij} = 0$

15

Generalized VAR(X) models

The generalized VAR model:

 $A_0^G y(k) = A_1^G y(k-1) + A_2^G y(k-2) + e_0(k) \quad e(k) \frown (0, \Sigma_0) \ \Sigma_0 \ \text{diagonal}$

with A_0^G lower triangular with unit entries on the diagonal. The relation with the original VAR(X) model is that:

 $\Sigma_e = (A_0^G)^{-1} \Sigma_0 (A_0^G)^{-T}$

maybe full, while its inverse is sparse. This introduces sparsity in A_0^G and probably also in the other parameter matrices.

The class of Sum-of-Kronecker Product Matrices

Definition: The class of sum-of-Kronecker product matrices is defined as:

$$\mathcal{K}_{2,r} = \{ M \in \mathbb{R}^{m_1 m_2 \times n_1 n_2} \ | M = \sum_{i=1}^r M_{i,2} \otimes M_{i,1} \}$$

for for $M_{i,1} \in \mathbb{R}^{m_1 \times n_1}, M_{i,2} \in \mathbb{R}^{m_2 \times n_2}$. The matrices $M_{i,1}$ and $M_{i,2}$ will be called the factor matrices.

The class of Sum-of-Kronecker Product Matrices

Definition: The class of sum-of-Kronecker product matrices is defined as:

$$\mathcal{K}_{2,r} = \{ M \in \mathbb{R}^{m_1 m_2 \times n_1 n_2} \ | M = \sum_{i=1}^r M_{i,2} \otimes M_{i,1} \}$$

for for $M_{i,1} \in \mathbb{R}^{m_1 \times n_1}, M_{i,2} \in \mathbb{R}^{m_2 \times n_2}$. The matrices $M_{i,1}$ and $M_{i,2}$ will be called the factor matrices.

Definition: [Kronecker rank] A matrix within $\mathcal{K}_{2,r}$ has Kronecker rank r when the following two matrices with r columns, which each column a vectorization of the matrices $M_{i,1}$ and $M_{i,2}$ respectively denoted as,

$$\begin{bmatrix} \cdots & \operatorname{vec}(M_{i,1}) & \cdots \end{bmatrix} \begin{bmatrix} \cdots & \operatorname{vec}(M_{i,2}) & \cdots \end{bmatrix}$$
 have full column rank r .

Delft Center for Systems and Control

Advantages of the class $\mathcal{K}_{2,r}$

Let $x \in \mathbb{R}^{N^2}$. Then, the orders of magnitude of the computational complexity for matrix-vector multiplication, matrix-matrix multiplication and matrix inversion are as follows:

 $\begin{array}{c|c} A,B\in \mathbb{R}^{N^2\times N^2} & A,B\in \mathcal{K}_{2,r} \\ \hline Ax & \mathcal{O}(N^4) & \mathcal{O}(rN^3) \\ AB & \mathcal{O}(N^6) & \mathcal{O}(r^2N^3) \\ A^{-1} \mbox{ (case: Kronecker rank of A is 1)} & \mathcal{O}(N^6) & \mathcal{O}(N^3) \end{array}$

The complexity obtained with the Kronecker-product parametriza-

tion considers the operations required for forming the factor matrices only.

The Quarks (Kronecker-based ARX) Model

The Quarks model is defined as:

$$y(k) = \sum_{i=1}^{n} \Big(\sum_{j=1}^{r_i} M_{i,j,2} \otimes M_{i,j,1} \Big) y(k-i)$$

Assume that $y(k) = \operatorname{vec}(Y(k))$ for $Y(k) \in \mathbb{R}^{pN \times N}$ and using the property of the vec-operator that $\operatorname{vec}(XYZ) = (Z^T \otimes X)\operatorname{vec}(Y)$, we can write the Quarks model as:

$$Y(k) = \sum_{i=1}^{n} \sum_{j=1}^{r_i} \left(M_{i,j,1} Y(k-i) M_{i,j,2}^T \right)$$

TUDelft

19

The Quarks (Kronecker-based ARX) Model

The Quarks model is defined as:

$$y(k) = \sum_{i=1}^{n} \Big(\sum_{j=1}^{r_i} M_{i,j,2} \otimes M_{i,j,1} \Big) y(k-i)$$

Assume that $y(k) = \operatorname{vec}(Y(k))$ for $Y(k) \in \mathbb{R}^{pN \times N}$ and using the property of the vec-operator that $\operatorname{vec}(XYZ) = (Z^T \otimes X)\operatorname{vec}(Y)$, we can write the Quarks model as:

$$Y(k) = \sum_{i=1}^{n} \sum_{j=1}^{r_i} \left(M_{i,j,1} Y(k-i) M_{i,j,2}^T \right)$$

Remark: This can be generalized further by parametrizing the coefficient matrices with Tensor calculus. See [Data-Driven Iden-tification of Networks of Dynamic Systems, Ch. 3]. 19

Part 1b: Parametrization State Space models

State Space Models

An LTI state space model is given as,:

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + v(k)$$

for $x(k) \in \mathbb{R}^n$, $y(k) \in \mathbb{R}^p$, $u(k) \in \mathbb{R}^m$ with n, m, p of $O(10^4)$, full parametrization?

21

State Space Models

An LTI state space model is given as,:

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + v(k)$$

for $x(k) \in \mathbb{R}^n$, $y(k) \in \mathbb{R}^p$, $u(k) \in \mathbb{R}^m$ with n, m, p of $O(10^4)$, full parametrization?

Or spatial structure imposed by "special" structure on the system matrices A, B, C?

Parametrization of SSM

- 1. Sparsely State space models.
 - A priori parametrized
 - Decomposable systems
 - Systems with Block-Tridiagonal system matrices
- 2. Data-sparse parametrized State Space models.
 - 1D: Sequentially Semi-Seperable system matrices
 - Multi-dimensional State Space Models

Block-Triangular state space model

This is state space model of the form:

$$\begin{cases} x(k+1) &= \mathcal{A}x(k) + \mathcal{B}u(k) + \mathcal{H}w(k) \\ y(k) &= \mathcal{C}x(k) + \mathcal{D}u(k) + \mathcal{G}w(k) \end{cases}$$

With the system matrices Block-Triangular. Such as,

$$\mathcal{A} = \begin{bmatrix} A_{1} & A_{1,r} & & & \\ A_{2,\ell} & A_{2} & \ddots & & \\ & \ddots & \ddots & A_{N-1,r} \\ & & & A_{N,\ell} & A_{N} \end{bmatrix}$$

Example: 1D Heterogeneous DNS

Consider the network of LTI systems:

Delft Center for Systems and Control

ŤUDelft

Example: 1D Heterogeneous DNS

Consider the network of LTI systems:

where $x_i(k) \in \mathbb{R}^{n_i}, u_i(k) \in \mathbb{R}^{m_i}, y_i(k) \in \mathbb{R}^{p_i}$ and $e_i(k)$ is a zero-mean white noise

Part 2: Identification of Large-Scale Dynamic Networks

One Identification Problem

Consider a 1D-network of N dynamic systems and we zoom in on the local system Σ_i and its LOCAL neigborhood!

One Identification Problem

Consider a 1D-network of N dynamic systems and we zoom in on the local system Σ_i and its LOCAL neigborhood!

Identification problem of Identifying Local System Σ_i Given: local input-output data of systems Σ_j for $j = i - R + 2, \cdots, i + R$ with $R \ll N$

Determine: the system matrices A_i, B_i, C_i of system Σ_i

 Identify the state sequence x^R(k) of the lifted system of R-systems to the right of Σ_i.

With that lifted system denoted as:

$$x^{R}(k+1) = A^{R}x^{R}(k) + B^{R}u^{R}(k)$$
$$+F^{R}\begin{bmatrix}x_{i}(k)\\x_{i+R+1}(k)\end{bmatrix}$$
$$y^{R}(k) = C^{R}x^{R}(k)$$

 Identify the state sequence x^R(k) of the lifted system of R-systems to the right of Σ_i.

• Likewise of the R systems to the left of Σ_{i+2} .

 Identify the state sequence x^R(k) of the lifted system of *R*-systems to the right of Σ_i.

- Likewise of the R systems to the left of Σ_{i+2} .
- $x_{i+1}(k) = x^R(k) \bigcap x^L(k)$

 Identify the state sequence x^R(k) of the lifted system of *R*-systems to the right of Σ_i.

- Likewise of the R systems to the left of Σ_{i+2} .
- $x_{i+1}(k) = x^R(k) \bigcap x^L(k)$
- Likewise determine $x_{i-1}(k)$

27

 Identify the state sequence x^R(k) of the lifted system of *R*-systems to the right of Σ_i.

- Likewise of the R systems to the left of Σ_{i+2} .
- $x_{i+1}(k) = x^R(k) \bigcap x^L(k)$
- Likewise determine $x_{i-1}(k)$
- Determine the system matrices A_i, B_i, C_i .

27

Solution to the first step

Lemma 1: When the lifted system

$$x^{R}(k+1) = A^{R}x^{R}(k) + B^{R}u^{R}(k) + F^{R}\begin{bmatrix}x_{i}(k)\\x_{i+R+1}(k)\end{bmatrix}$$
$$y^{R}(k) = C^{R}x^{R}(k)$$

is strongly observable, i.e. the compound matrix $\begin{bmatrix} C^R \\ C^R A^R \\ \vdots \\ C^R (A^R)^{s-1} \end{bmatrix}$, $\begin{bmatrix} 0 & & & \\ C^R F^R & \cdots & 0 & \\ \vdots & \ddots & \\ C^R (A^R)^{s-2} F^R & C^R F^R \end{bmatrix}$ has full rank, then the *ordinary* intersection algorithm of Moonen et. all can be used to find $x^R(k)$.

Illustration

Consider a homogeneous 1D network of 40 systems given by the following systemm matrices:

$$\begin{split} A_i &= \begin{bmatrix} 0.2728 & -0.2068 \\ 0.1068 & 0.2728 \end{bmatrix}, A_{i,i-1} = \begin{bmatrix} -0.1195 & -0.3565 \\ 0.0874 & -0.1048 \end{bmatrix} \\ A_{i,i+1} &= \begin{bmatrix} 0.0699 & -0.4278 \\ 0.3842 & 0.1135 \end{bmatrix}, B_i = \begin{bmatrix} 0.3870 \\ -1.2705 \end{bmatrix} \\ C_i &= \begin{bmatrix} -0.9075 & -1.3651 \end{bmatrix} \text{ for } i = 1, \cdots, 40. \end{split}$$

The system input in the simulation is generated randomly following the standard Gaussian distribution.

Illustration (Ct'd)

We considered s = 10 and R = 7 and $N_t = 2000$. Further 200 Monte Carlo trials are made. The estimated poles of the system for i = 20 are:

30

Illustration (Ct'd)

We considered s = 10 and R = 7 and $N_t = 8000$. Further 200 Monte Carlo trials are made. The estimated poles of the system for i = 20 are:

Part 3: Applications

32

The book is readily available

M.Verhaegen, Chengpu Yu and Baptiste Sinquin: "Data-Driven Identification of Networks of Dynamic Systems"

Acknowledgement EU: ERC-Advanced Grant iCON 716669

33