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2. Part 2: Identification methods
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An example of Large Scale Dynamic Systems
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An example of Large Scale Dynamic Systems

ELT (XL-Telescope) :

1. Primary Mirror: Segmented — 798

hexagonal segments (39m ◦)
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An example of Large Scale Dynamic Systems

ELT (XL-Telescope) :

1. Primary Mirror: Segmented — 798

hexagonal segments (39m ◦)

2. M4 Adaptive Mirror: 8000 actuators

(2.4 m ◦).

3. · · ·
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Many More Examples of Large Scale Networks of Dynamic Systems

1. Active Boundary Layer Control

2. Formation Flying of satellites

3. Cellular Network dynamics in diseases

4. · · ·
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Part 1: Parametrization Large-Scale
Dynamic Networks



9

Delft Center for Systems and Control

Content on Parametrization

1. Transfer Function models

2. Structured State Space models

3. etc.



10

Delft Center for Systems and Control

Part 1a: Transfer Function Models
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Content for Parametrizing Transfer Functions

1. Use of Graphs to define sparse (transfer function) matrices.

2. Kronecker-Based VAR (Quarks) models

3. Tensor VAR models

4. etc.
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Need for Structural Model Parametrization

Given a MIMO system modeled as:

y(k) = G(q)u(k) +H(q)e(k)

with y(k) ∈ R
p, u(k) ∈ R

m resp. the output and input signals of

the system, and e(k) ∈ R
p a (temporally) white noise signal and

G(z) is a p×m rational function matrix (strictly) proper

H(z) is a p× p rational function matrix (proper)

What if p,m is of O(104)?
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Example of a sparse DNF















y1(k)

y2(k)

y3(k)

y4(k)















=















0 W12(q) W13(q) 0

0 0 W23(q) 0

W31(q) 0 0 0

0 0 W43(q) W44(q)





























y1(k)

y2(k)

y3(k)

y4(k)















+















V11(q) 0 0 0

0 V22(q) 0 0

0 0 V33(q) 0

0 0 0 V44(q)





























u1(k)

u2(k)

u3(k)

u4(k)

















14

Delft Center for Systems and Control

Example of a sparse DNF (Graph representation)
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Sparse VAR models

Consider the 2nd-order VAR model:

y(k) = A1y(k−1+A2y(k−2)+e(k) e(k) ⌢ (0,Σe) Ke = Σ−1
e y(k) ∈ R

p

Then the Granger Causality graph is the mixed graph

(VGC , AGC , EGC), with AGC representing the directed edges and

EGC the undirected ones, is defined as follows:

VGC = {1, · · · , p}

(i, j) /∈ AGC ⇔ (Aτ )ji = 0 ∀τ ∈ {1, · · · , 2}

(i, j) /∈ EGC ⇔ Kij = 0
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Generalized VAR(X) models

The generalized VAR model:

AG
0 y(k) = AG

1 y(k−1)+AG
2 y(k−2)+e0(k) e(k) ⌢ (0,Σ0) Σ0 diagonal

with AG
0 lower triangular with unit entries on the diagonal.

The relation with the original VAR(X) model is that:

Σe = (AG
0 )

−1Σ0(A
G
0 )

−T

maybe full, while its inverse is sparse. This introduces sparsity in

AG
0 and probably also in the other parameter matrices.
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The class of Sum-of-Kronecker Product Matrices

Definition: The class of sum-of-Kronecker product matrices is

defined as:

K2,r = {M ∈ R
m1m2×n1n2 |M =

r
∑

i=1

Mi,2 ⊗Mi,1}

for for Mi,1 ∈ R
m1×n1 ,Mi,2 ∈ R

m2×n2 . The matrices Mi,1 and

Mi,2 will be called the factor matrices.
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The class of Sum-of-Kronecker Product Matrices

Definition: The class of sum-of-Kronecker product matrices is

defined as:

K2,r = {M ∈ R
m1m2×n1n2 |M =

r
∑

i=1

Mi,2 ⊗Mi,1}

for for Mi,1 ∈ R
m1×n1 ,Mi,2 ∈ R

m2×n2 . The matrices Mi,1 and

Mi,2 will be called the factor matrices.

Definition: [Kronecker rank] A matrix within K2,r has Kronecker

rank r when the following two matrices with r columns, which

each column a vectorization of the matrices Mi,1 and Mi,2

respectively denoted as,
[

· · · vec
(

Mi,1

)

· · ·
] [

· · · vec
(

Mi,2

)

· · ·
]

have full column rank r.
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Advantages of the class K2,r

Let x ∈ R
N2

. Then, the orders of magnitude of the computational

complexity for matrix-vector multiplication, matrix-matrix

multiplication and matrix inversion are as follows:

A,B ∈ R
N2

×N2

A,B ∈ K2,r

Ax O(N4) O(rN3)

AB O(N6) O(r2N3)

A−1 (case: Kronecker rank of A is 1) O(N6) O(N3)

The complexity obtained with the Kronecker-product parametriza-

tion considers the operations required for forming the factor ma-

trices only.
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The Quarks (Kronecker-based ARX) Model

The Quarks model is defined as:

y(k) =

n
∑

i=1

(

ri
∑

j=1

Mi,j,2 ⊗Mi,j,1

)

y(k − i)

Assume that y(k) = vec(Y (k)) for Y (k) ∈ R
pN×N and using the

property of the vec-operator that vec(XY Z) = (ZT ⊗X)vec(Y ),

we can write the Quarks model as:

Y (k) =

n
∑

i=1

ri
∑

j=1

(

Mi,j,1Y (k − i)MT
i,j,2

)
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The Quarks (Kronecker-based ARX) Model

The Quarks model is defined as:

y(k) =

n
∑

i=1

(

ri
∑

j=1

Mi,j,2 ⊗Mi,j,1

)

y(k − i)

Assume that y(k) = vec(Y (k)) for Y (k) ∈ R
pN×N and using the

property of the vec-operator that vec(XY Z) = (ZT ⊗X)vec(Y ),

we can write the Quarks model as:

Y (k) =

n
∑

i=1

ri
∑

j=1

(

Mi,j,1Y (k − i)MT
i,j,2

)

Remark: This can be generalized further by parametrizing the

coefficient matrices with Tensor calculus. See [Data-Driven Iden-

tification of Networks of Dynamic Systems, Ch. 3].
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Part 1b: Parametrization State
Space models
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State Space Models

Plant

u(k) y(k)

An LTI state space model is given as,:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) + v(k)

for x(k) ∈ R
n, y(k) ∈ R

p, u(k) ∈ R
m with n,m, p of O(104), full

parametrization?
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State Space Models

Plant

u(k) y(k)

An LTI state space model is given as,:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) + v(k)

for x(k) ∈ R
n, y(k) ∈ R

p, u(k) ∈ R
m with n,m, p of O(104), full

parametrization?

Or spatial structure imposed by “special” structure on the system

matrices A,B,C?
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Parametrization of SSM

1. Sparsely State space models.

• A priori parametrized

• Decomposable systems

• Systems with Block-Tridiagonal system matrices

2. Data-sparse parametrized State Space models.

• 1D: Sequentially Semi-Seperable system matrices

• Multi-dimensional State Space Models
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Block-Triangular state space model

This is state space model of the form:







x(k + 1) = Ax(k) + Bu(k) +Hw(k)

y(k) = Cx(k) +Du(k) + Gw(k)

With the system matrices Block-Triangular. Such as,

A =






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





A1 A1,r

A2,ℓ A2
. . .

. . .
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Example: 1D Heterogeneous DNS

Consider the network of LTI systems:

+2

xi−R+1(k) xi−1(k)
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R
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Example: 1D Heterogeneous DNS

Consider the network of LTI systems:

+2

xi−R+1(k) xi−1(k)

xi+1(k)

ui−R+2(k) ui−1(k) ui(k)

yi(k)

ui+1(k)

yi−R+2(k) yi−1(k) yi+1(k)

i−R
i− 1 i i+ 1 i+R

xi+R+1(k)

ui+R(k)

yi+R(k)

R
R

with local systems Σi for i = 1, · · · , N to be represented as,
Σ1 : x1(k + 1) = A1x1(k) +A1,rx2(k) +B1u1(k)

y1(k) = C1x1(k) + e1(k)

Σi : xi(k + 1) = Aixi(k) + Ai,ℓxi−1(k) +A1,rxi+1(k) +Biui(k)

yi(k) = Cixi(k) + ei(k)

ΣN : xN (k + 1) = ANx1(k) + AN,ℓxN−1(k) +BNuN (k)

yN (k) = CNxN (k) + eN (k)

where xi(k) ∈ R
ni , ui(k) ∈ R

mi , yi(k) ∈ R
pi and ei(k) is a zero-mean white noise

sequence with given covariance matrix.
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Part 2: Identification of Large-Scale
Dynamic Networks
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One Identification Problem
Consider a 1D-network of N dynamic systems and we zoom in

on the local system Σi and its LOCAL neigborhood!

xi−R+1(k)

Σi−R+2 Σi−1 Σi Σi+1 Σi+R

xi+R+1(k)

xi−1(k)

xi+1(k)

ui(k) ui+1(k)ui−1(k)ui−R+2(k) ui+R(k)

yi(k) yi+1(k)yi−1(k)yi−R+2(k) yi+R(k)

Li
Ri
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One Identification Problem
Consider a 1D-network of N dynamic systems and we zoom in

on the local system Σi and its LOCAL neigborhood!

xi−R+1(k)

Σi−R+2 Σi−1 Σi Σi+1 Σi+R

xi+R+1(k)

xi−1(k)

xi+1(k)

ui(k) ui+1(k)ui−1(k)ui−R+2(k) ui+R(k)

yi(k) yi+1(k)yi−1(k)yi−R+2(k) yi+R(k)

Li
Ri

Identification problem of Identifying Local System Σi

Given: local input-output data of systems Σj for

j = i−R+ 2, · · · , i+R with R ≪ N

Determine: the system matrices Ai, Bi, Ci of system Σi
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Strategy to solve the “one” Identification Problem
• Identify the state sequence xR(k) of the lifted system of

R-systems to the right of Σi.

Σi+1 Σi+R

xi(k)

xi+R+1(k)

xi+1(k)

ui+1(k) ui+R(k)

yi+1(k) yi+R(k)
R

With that lifted system denoted as:

xR(k + 1) = ARxR(k) + BRuR(k)

+FR





xi(k)

xi+R+1(k)





yR(k) = CRxR(k)
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Strategy to solve the “one” Identification Problem
• Identify the state sequence xR(k) of the lifted system of

R-systems to the right of Σi.

Σi+1 Σi+R

xi(k)

xi+R+1(k)

xi+1(k)

ui+1(k) ui+R(k)

yi+1(k) yi+R(k)
R

With that lifted system denoted as:

xR(k + 1) = ARxR(k) + BRuR(k)

+FR





xi(k)

xi+R+1(k)





yR(k) = CRxR(k)

• Likewise of the R systems to the left of Σi+2.
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Strategy to solve the “one” Identification Problem
• Identify the state sequence xR(k) of the lifted system of

R-systems to the right of Σi.

Σi+1 Σi+R

xi(k)

xi+R+1(k)

xi+1(k)

ui+1(k) ui+R(k)

yi+1(k) yi+R(k)
R

With that lifted system denoted as:

xR(k + 1) = ARxR(k) + BRuR(k)

+FR





xi(k)

xi+R+1(k)





yR(k) = CRxR(k)

• Likewise of the R systems to the left of Σi+2.

• xi+1(k) = xR(k)
⋂

xL(k)
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Strategy to solve the “one” Identification Problem
• Identify the state sequence xR(k) of the lifted system of

R-systems to the right of Σi.

Σi+1 Σi+R
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


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



yR(k) = CRxR(k)

• Likewise of the R systems to the left of Σi+2.

• xi+1(k) = xR(k)
⋂

xL(k)

• Likewise determine xi−1(k)
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Strategy to solve the “one” Identification Problem
• Identify the state sequence xR(k) of the lifted system of

R-systems to the right of Σi.

Σi+1 Σi+R

xi(k)

xi+R+1(k)

xi+1(k)

ui+1(k) ui+R(k)

yi+1(k) yi+R(k)
R

With that lifted system denoted as:

xR(k + 1) = ARxR(k) + BRuR(k)

+FR





xi(k)

xi+R+1(k)





yR(k) = CRxR(k)

• Likewise of the R systems to the left of Σi+2.

• xi+1(k) = xR(k)
⋂

xL(k)

• Likewise determine xi−1(k)

• Determine the system matrices Ai, Bi, Ci.
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Solution to the first step
Lemma 1: When the lifted system

xR(k + 1) = ARxR(k) +BRuR(k) + FR





xi(k)

xi+R+1(k)





yR(k) = CRxR(k)

is strongly observable, i.e. the compound matrix
















CR

CRAR

.

.

.

CR(AR)s−1

















,

















0

CRFR
· · · 0

.

.

.
. . .

CR(AR)s−2FR CRFR

















has full rank, then

the ordinary intersection algorithm of Moonen et. al can be used

to find xR(k).
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Illustration

Consider a homogeneous 1D network of 40 systems given by

the following systemm matrices:

Ai =





0.2728 −0.2068

0.1068 0.2728



 , Ai,i−1 =





−0.1195 −0.3565

0.0874 −0.1048





Ai,i+1 =





0.0699 −0.4278

0.3842 0.1135



 , Bi =





0.3870

−1.2705





Ci =
[

−0.9075 −1.3651
]

for i = 1, · · · , 40.

The system input in the simulation is generated randomly follow-

ing the standard Gaussian distribution.
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Illustration (Ct’d)
We considered s = 10 and R = 7 and Nt = 2000. Further 200

Monte Carlo trials are made. The estimated poles of the system

for i = 20 are:
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Illustration (Ct’d)
We considered s = 10 and R = 7 and Nt = 8000. Further 200

Monte Carlo trials are made. The estimated poles of the system

for i = 20 are:
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Part 3: Applications



33

Delft Center for Systems and Control

The book is readily available

M.Verhaegen,

Chengpu Yu and

Baptiste Sinquin:

“Data-Driven Identifi-

cation of Networks of

Dynamic Systems”
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