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Motivation
• Spatial and temporal inter-dependency of data
• Different possible machine learning tasks
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Nonlinear Vector Auto-regressive(VAR) model

• A P -th order non-linear VAR model with N number of nodes

yn[t] =

N∑
n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t] (1)

• Estimate f
(p)
n,n′(.)
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Reproducing kernel Hilbert space (RKHS)

• Assume functions f
(p)
n,n′(.) in (1) belong to RKHS:

H(p)
n′ :=

{
f
(p)
n,n′ |f (p)

n,n′ (y) =
∞∑
t=0

β
(p)
n,n′,t κ

(p)
n′ (y, yn′ [t− p])

}
, (2)

• κ
(p)
n′ (., .) : R× R → R is the Hilbert space basis function, often known as the

kernel

• Hilbert space is characterized by the inner product

⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ =

∑∞
t=0 κ

(p)
n′ (y[t], x1) κ

(p)
n′ (y[t], x2)
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Non-parametric optimization

• For a node n, the least-squares (LS) estimates of{
f
(p)
n,n′ ∈ H(p)

n′ ;n′ = 1, . . . , N, p = 1, . . . , P
}

are obtained by solving,

{
f̂
(p)
n,n′

}
n′,p

=arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

f
(p)
n,n′(yn′ [τ − p])

]2

+ λ

N∑
n′=1

P∑
p=1

Ω(||f (p)
n,n′ ||H(p)

n′
). (3)
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Representer Theorem

• The solution of (3) can be written using a finite number of data samples:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) (4)

• Solution becomes prohibitive as number of data points increases
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Random feature approximation

• Inner product preserving map

• A. Rahimi and B. Recht, “Random
features for large-scale kernel
machines,” NIPS’07
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• Obtain a fixed dimension (2D terms) approximation of the function f̂
(p)
n,n′ :

ˆ̂f
(p)
n,n′ (yn′ [τ − p])) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)zv (yn′ [τ − p])⊤ zv (yn′ [t− p])

= α
(p)
n,n′

⊤
zv (yn′ [τ − p]) , (5)

zv(x) =
1√
D
[sin v1x, . . . , sin vDx, cos v1x, . . . , cos vDx]

⊤. (6)
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• Stack the entries of α
(p)
n,n′ and z

(p)
n′,d (τ) to obtain the vectors αn ∈ R2PND and

zτ ∈ R2PND

α̂n = argmin
αn

Ln (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (7)

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

n zτ

]2
(8)

• λ ≥ 0 is the regularization parameter
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Online optimization

• Replace the original loss function Ln(αn) in (7) with a running average loss
function:

ℓ̃nt (αn) = µ

t∑
τ=P

γt−τ ℓnτ (αn) (9)

where lnτ (αn) =
1
2 [yn[τ ]−α⊤

nκτ ]
2.
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• convex loss and non differentiable regularizer

α̂n = argmin
αn

ℓ̃nt (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (10)

• Closed form solution

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]

)
×[

1− γtλ 1 {n ̸= n′}
∥α(p)

n,n′ [t]− γtv
(p)
n,n′ [t]∥2

]
+

, (11)

where [x]+ = max {0, x} and

1
{
n ̸= n′} =

{
1, if n ̸= n′

0, n = n′
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Theoretical Analysis: Dynamic Regret

• Dynamic Regret: Test the capability of an online algorithm in a dynamic
environment.

Rn[t] =

T∑
t=P

[h
(n)
t (fn[t])− h

(n)
t (f∗

n[t])] (12)

• Sub-linear dynamic regret by suitably choosing ϵ as long as
W n

T =
∑T

t=P ∥α∗
n[t]−α∗

n[t− 1]∥2 is sub-linear.
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Experiment 1: synthetic data

• N=5,P=4,T=3000, equation (1)(VAR)

• Adjacency matrix generated with edge probability .3

• Non linearity in (1) is induced by Gaussian kernel

• 30% edges disappears

•
{
α

(p)
n,n′ [t]

}
are estimated b̂

(p)
n,n′ = ∥α(p)

n,n′ [t]∥2 at t = T and find pseudo adjacency

matrix
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Experiment 2: Real data

• Real data from Lundin’s offshore oil and gas (O&G) platform Edvard-Grieg1

• Temperature (T), pressure (P), or oil-level (L) sensors placed in separators.

• The causal dependencies among the 24 time series obtained by averaging the
RFNL-TIRSO estimates for one hour

1https://www.lundin-energy.com/
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Missing data

O
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Problem formulation

• Masking vector m[t] ∈ RN

• Observed vector signal ỹ[t]

• y[t] = [y1[t], ..., yn[τ ]]⊤ ∈ RN

ỹ[t] = m[t]⊙ (y[t] + e[t]) (13)
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Signal reconstruction

ŷn[t] = argmin
yn[t]

ℓnt (αn, yn[t]) (14)

ŷn[t] =
νmn[t]ỹn[t]

Mt + νmn[t]
+

kn[t]Mt

νmn[t] +Mt
(15)
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Online Topology Identification
• ℓnt (αn) =

1
2 [ŷn[t]−α⊤

n zv[t]]
2

α̂n = arg min
αn

ℓnt (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2 (16)

• Closed form solution

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]

)
×[

1− γtλ 1 {n ̸= n′}
∥α(p)

n,n′ [t]− γtv
(p)
n,n′ [t]∥2

]
+

, (17)

where [x]+ = max {0, x} and

1
{
n ̸= n′} =

{
1, if n ̸= n′

0, n = n′
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Experiment (a): Real data

• N = 24, P = 12, T = 4300

• Data from 8 sensors available at a time
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Experiment (b): Real data

• Sensor data missing from t = 4000 to t = 4200
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Time structured approach

• Predict the model based on its evolution and then correct the prediction when the
new data sample is available
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Experiment synthetic data

• N=5, T= 5000

• W[0] ∈ R5×5 is constructed using an Erdős-Rényi random graph with diagonal
entries zero

y[t] = 0.1(I−W[t])−1u[t] + 0.1 sin((I−W[t])−1u[t]) (18)

W[t+ 1] = W[t] + 0.001 sin(0.01t)W[t] (19)
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MSE comparison and convergence in terms of dynamic regret
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Conclusion
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Do check out

• R. Money, J. Krishnan and B. Beferull-Lozano, ”Sparse online learning with
kernels using random features for estimating nonlinear dynamic graphs,” in IEEE
Transactions on Signal Processing 2023

• R. Money, J. Krishnan and B. Beferull-Lozano, ”Random feature approximation
for online nonlinear graph topology identification,” European Signal Processing
Conference (EUSIPCO) 2022

• R. Money, J. Krishnan, B. Beferull-Lozano and E. Isufi, ”Scalable and
privacy-aware online learning of nonlinear structural equation models,” in IEEE
Open Journal on Signal Processing 2023
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Thank you!
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