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Data augmentation as implicit regularization
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With data
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More training data

Avoid overfitting with intelligently generated data

nav@rice.edu 1



Mixup for data augmentation via linear combinations of data pairs
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MAD directions

> Mixup method = Beyond pairwise linear mixup
> Mixup domain = Beyond Euclidean domains

> Mixup application — Beyond improving accuracy
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When does pairwise linear mixup fail?
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Linear mixup may add uncertainty in ways that are unhelpful
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Clustering uses sample similarity to globally characterize datasets by their groups
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Clustering methods such as hierarchical clustering use
relationships among data to assign data to groups
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Convex clustering as a characterization of sample similarity
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Convex clustering tradeoff between fusing clusters and fitting to samples
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Convex clustering as a characterization of sample similarity

Fidelity Fusion
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= x;: Each sample
= 1;(1): Cluster centroid for each sample at 1 € [0,1]

= A: Fusion parameter

Convex clustering tradeoff between fusing clusters and fitting to samples
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Convex clustering as a characterization of sample similarity

Fidelity Fuslion
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= ] tunes between original dataset and total fusion (dataset
mean)

= ) = 0:T singleton clusters
= 1€ (0,1): Data samples begin to fuse into clusters

= 1 = 1: All samples in one cluster

Convex clustering tradeoff between fusing clusters and fitting to samples
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Convex clustering as a characterization of sample similarity
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Convex clustering as a characterization of sample similarity
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Convex clustering as a characterization of sample similarity
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Convex clustering as a characterization of sample similarity
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MAD directions

> Mixup domain = Beyond Euclidean domains

> Mixup application — Beyond improving accuracy
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Mixup for data augmentation via linear combinations of data pairs
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Non-Euclidean graph data is difficult to mixup
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Graph Mixup for Augmenting Data (GraphMAD)

Original data
Label: O
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Graph Mixup for Augmenting Data (GraphMAD)
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Step 1: Embed graphs
Step 2: Obtain mixture of embeddings

Step 3: Convert embedding mixture to
graph
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Limit objects as embedding space

50 nodes
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Limit objects as embedding space
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Limit objects as embedding space
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Limit objects as embedding space

500 nodes
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Limit objects as embedding space

Convergence to graphon
in cut distance
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Limit objects as embedding space

Graphon
estimation

0 1

Estimated graphon Graph
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Graph Mixup for Augmenting Data (GraphMAD)
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Stochastic inversion of graphon embedding allows multiple views of new data

Graphon Sampled graph
W:[0,1]% - [0,1] G ~W
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Graph Mixup for Augmenting Data (GraphMAD)
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GraphMAD improves performance and outperforms linear mixup on all datasets

Graph classification accuracy on molecule and bioinformatics datasets

Method DD PROTEINS ENZYMES AIDS MUTAG NCI109

Data mixup Label mixup 2 classes 2 classes 6 classes 2 classes 2 classes 2 classes
None None 68.77 + 2.35 69.51 + 1.20 26.43 + 2.55 96.18 + 2.57 84.59 + 5.53 68.23 + 2.13
Linear 67.01 +1.72 65.15 + 2.53 24.88 + 3.38 96.82 + 1.39 85.71 + 7.15 68.16 + 2.72
_ Sigmoid 64.89 + 1.49 68.42 + 3.94 24.76 + 4.10 96.07 + 1.42 85.71 + 4.63 65.96 + 2.34
Linear Logit 66.22 + 3.82 69.25 + 2.94 25.95 + 5.48 96.07 + 1.27 80.08 + 5.60 66.81 + 4.07
Cvx. Clust. 68.22 + 3.71 69.38 + 2.04 24.64 + 2.39 95.86 + 1.88 87.22 + 496 65.01 + 3.07
Linear 67.11 £ 1.56 67.51 + 2.62 26.67 + 6.49 97.15 + 1.00 87.24 + 4.21 68.61 + 1.41
Cux. Clust. Sigmoid 68.23 + 3.61 64.60 + 5.07 32.62 + 6.35 97.07 £ 1.35 85.20 + 3.53 67.50 £ 2.06
Logit 70.07 + 2.51 67.26 + 2.84 25.71 +4.26 95.87 +1.47  80.10+14.77  65.33 +3.35
Cvx. Clust. 70.44 + 3.79 71.18 = 3.98 24.52 + 3.30 97.22 + 0.54 85.71 £ 5.40 68.54 + 3.16

Data augmentation with GraphMAD consistently outperforms linear
mixup, and different label mixup functions can improve accuracy
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MAD directions

> Mixup application — Beyond improving accuracy
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Machine learning models may act harmfully in the presence of sensitive information

Gender Darker Darker Lighter Lighter Largest
R, ] Classifier Male Female Male Female Gap
;7' Reuters
B® Microsoft 94.0% 79.2% 100% 98.3% 20.8%
I I .
E : FACE* 99.3% 65.5% 99.2% 94.0% 33.8%
World (i = R ——— I .

B 88.0% 65.3% 99.7% 92.9% 34.4%

Insight - Amazon scraps secret Al recruiting i e ——
tool that showed bias against women

Online images amplify gender bias

Douglas Guilbeault 8, Soléne Delecourt, Tasker Hull, Bhargav Srinivasa Desikan, Mark Chu & Ethan Nadler

Nature 626, 1049-1055 (2024) ’ Cite this article
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Group fairness encourages similar treatment for each group separately

Group fairness: Treatment invariant to different values of sensitive attribute
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Group fairness encourages similar treatment for each group separately

Group fairness: Treatment invariant to different values of sensitive attribute

Demographic parity: Predictions ¥ = f(X) independent of sensitive attribute Z € {0,1}

PlY =y|Z=0]=P|V =y|Z =1]
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Group fairness encourages similar treatment for each group separately

Group fairness: Treatment invariant to different values of sensitive attribute

Demographic parity: Predictions ¥ = f(X) independent of sensitive attribute Z € {0,1}
PlY =y|Z=0]=P|V =y|Z =1]

In practice: ADP =E|Y =y|Z=0]|-E[f =y|Z=1] =0 DP achieved!
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Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias

Class: O
Class: O Group: 1
Group: O
Class: 1
Without Group: 1

O
mixup . .
O
Class: 1 .. © 0 &
Group: O .

Bias due to underrepresented groups or shifts in distribution across groups

nav@rice.edu 22



Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias
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FSGM: Pairwise mixup between source subgroup and target subgroup
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Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias

Class: O
Class: O Group: 1
Group: 0 @
Class: 1
Group: 1
Class: 1
Group: O

FSGM: Pairwise mixup between source subgroup and target subgroup

Mixup across groups promotes invariance between groups
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Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias
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FSGM: Pairwise mixup between source subgroup and target subgroup

Mixup across classes promotes learning separately per group
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Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias

Class: O

Class: O Group: 1

Group: O

With
Hilxllli - Class: 1
Without Group: 1

mixup

Class: 1
Group: O

FSGM: Pairwise mixup between source subgroup and target subgroup

FSGM addresses two types of bias in data
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Unbalanced groups result in unfair treatment of underrepresented group

Class 0, group 0 X
Class 0, group 1
Class 1, group O
Class 1, group 1

| |
T T

Principal component 2

X ® X 0

Principal component 1

Unbalanced groups: Model treatment heavily influenced by overrepresented group
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Unbalanced groups result in unfair treatment of underrepresented group

Class 0, group 0 X '
Class 0, group 1 ®
Class 1, group0 @
Class 1, group 1

Principal component 2

X ® X 0

Principal component 1

Mixup between classes of underrepresented group encourages
more certain decision boundary
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Mixup between classes of underrepresented group encourages confident decision boundary
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Fairness, 1 — ADP

Fair SubGroup Mixup (FSGM) improves both accuracy and fairness above
existing fairness and data augmentation methods
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Unbalanced classes can violate demographic parity

Principal component 2
[

Principal component 1

Unbalanced classes: Gaps between groups in minority class may
result in demographic parity gap

nav@rice.edu 25



Unbalanced classes can violate demographic parity

Principal component 2
[

Principal component 1

Mixup between groups of minority class encourages

similar group treatment, demographic parity
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Mixup within underrepresented class encourages demographic parity
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Fair SubGroup Mixup (FSGM) improves accuracy
and achieves fairness rivaling the fairest method
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Law school admission bar passage with race as protected attribute
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Accuracy
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Class: Bar passage (yes or no)
Group: Race (white or non-white)

0.90
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Law school admission bar passage with race as protected attribute
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On real-world benchmark dataset, FSGM improves fairness
with robust accuracy compared to baselines
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> Mixup method = Mixup using informative convex clustering
> Mixup domain = Mixtures of non-Euclidean graphs

> Mixup application = Applying mixup for improving model fairness
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> Mixup method = Mixup using informative convex clustering

Next steps - Theoretical and empirical evaluation of convex clustering for
different applications and domains

> Mixup domain = Mixtures of non-Euclidean graphs

> Mixup application = Applying mixup for improving model fairness
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> Mixup method = Mixup using informative convex clustering

Next steps - Theoretical and empirical evaluation of convex clustering for
different applications and domains

> Mixup domain = Mixtures of non-Euclidean graphs

Next steps - Effects of mixtures of graphs for data augmentation via
graphon theory

> Mixup application = Applying mixup for improving model fairness

Next steps - Convex clustering mixup for group fairness, individual
fairness, or problems involving intersectionality
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Complexon as simplicial complex limit object

Dimension 1 Dimension 2
Edge likelihoods  Triangle likelihoods

|

Complexon

w: L|[o,1]d+1 5 [0,1]

az1
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Complexon as simplicial complex limit object

Dimension 1 Dimension 2
Edge likelihoods  Triangle likelihoods

Complexon . ..
Sampled simplicial
124 Ll[o,l]d+1 - [0,1] complex K ~ W
a=1
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Complexon as simplicial complex limit object

Dimension 1 Dimension 2
Edge likelihoods  Triangle likelihoods

Complexon
estimation

—

Estimated complexon . .
Simplicial complex

w: U[o,1]d+1 5 [0,1] X

az1
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Simplicial Complex Mixup for Augmenting Data (SC-MAD)

/
Original data / ‘/

~_
T~
Original data
Label: O ‘// \q Iiga bel: 1

Step 1: Embed simplicial complexes

Step 2: Obtain mixture of embeddings
New data

Step 3: Convert embedding mixture to Label: 0.5

simplicial complex
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GraphMAD improves performance and outperforms linear mixup on all datasets

Graph classification accuracy on social datasets

Method COLLAB IMDB-B IMDB-M
Data mixup Label mixup 3 classes 2 classes 3 classes
None None 80.00 £ 0.96 73.14 +3.15 47.71 £4.25
Linear 77.60 £1.53 72.07£2.06 47.24 +4.21
Sigmoid 7821 £1.16 74.00 £2.14 49.67 + 2.15
Linear
Logit 78.19+1.61 72.64+1.73 47.43 +2.45
Cvx. Clust. 7841 £0.99 7143 +3.25 47.29+5.21
Linear 78.93 £+2.63 70.57 £4.89 45.52+4.09
Sigmoid 77.89+1.30 75.00 £5.13 44.48 +2.78
Cvx. Clust.
Logit 80.39 + 1.20 73.43 +4.75 48.76 +2.43
Cvx. Clust. 79.55+2.29 71.43+4.72 49.71 +4.33

Data augmentation with GraphMAD consistently outperforms linear
mixup, and different label mixup functions can improve accuracy
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SC-MAD for mixing complexons demonstrates consistent classification improvement

Simplicial complex classification accuracy on synthetic and real datasets

Method Vietoris-Rips MNIST
Data mixup Label mixup 2 classes 3 classes
None None 63.1 = 1.67 78.2 £ 0.51
Linear 70.9 = 0.51 80.2 +1.11
Sigmoid 71.9 + 0.84 68.7 + 0.88
Linear
Logit 59.4 +1.46 70.5 £ 0.33
Cvx. Clust. 66.9 + 1.93 80.5 + 0.57
Linear 68.8 £ 1.96 80.4 +1.10
Sigmoid 68.8 + 1.56 81.9 + 0.072
Cvx. Clust.
Logit 70.9 £ 0.64 81.7 +0.49
Cvx. Clust. 738 +0.57  85.6 + 0.52 MNIST image O

Both efficient linear mixup and informative convex clustering mixup

nav@rice.edu

improve classification performance



Class-dependent structure in complexon mixtures
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Class-dependent structure in complexon mixtures

nav@rice.edu

Theorem For a set of simplicial complexes {(K;,y;)};_; and their
estimated complexons {I/T/l-}iTzl, let Wy =20 viW; for ¥_,y;, =1
denote a complexon mixture.

~~

Then, for the j-th estimate W;, as y; > 1 or W; - ¥ ;= =, — W,

|t(F, Whew) — t(F, W;)| - 0,

where F is any finite simplicial complex and t(F, W) is the
homomorphism density of F in V.
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Class-dependent structure in complexon mixtures
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Theorem For a set of simplicial complexes {(K;,y;)};_; and their

estimated complexons {Wi}i=1’ let Wy =20 viW; for ¥_,y;, =1
denote a complexon mixture.

~~

Then, for the j-th estimate W}, as y; » 1 or W; - ¥,
|t(F, Whew) — t(F, W;)| - 0,

where F is any finite simplicial complex and t(F, W) is the
homomorphism density of F in V.

Class-discriminative structure is present in complexon mixtures

Mixup preserves class information when interpolating between classes
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Heavily underrepresented subgroup as underrepresented class and group
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Principal component 2

Principal component 1

Underrepresented subgroup: Minority subgroup sensitive to
unfair distribution shifts
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Heavily underrepresented subgroup as underrepresented class and group
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Principal component 2

Principal component 1

Unbalanced groups and classes
with distribution shift that contributes bias
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Heavily underrepresented subgroup as underrepresented class and group
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Fairness, 1 — ADP

Fair SubGroup Mixup (FSGM) improves fairness
while maintaining or improving accuracy
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