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Mixup for data augmentation via linear combinations of data pairs
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MAD directions

Mixup method ⟹ Beyond pairwise linear mixup

Mixup domain ⟹ Beyond Euclidean domains

Mixup application ⟹ Beyond improving accuracy
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Clustering uses sample similarity to globally characterize datasets by their groups

Clustering methods such as hierarchical clustering use 
relationships among data to assign data to groups
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Convex clustering as a characterization of sample similarity

K. Pelckmans, J. De Brabanter, J. A. Suykens, and B. De Moor, PASCAL 2005

Convex clustering tradeoff between fusing clusters and fitting to samples
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Convex clustering as a characterization of sample similarity

§ 𝐱!: Each sample

§ !𝐮! 𝜆 : Cluster centroid for each sample at 𝜆 ∈ 0,1

§ 𝜆: Fusion parameter

K. Pelckmans, J. De Brabanter, J. A. Suykens, and B. De Moor, PASCAL 2005

Convex clustering tradeoff between fusing clusters and fitting to samples
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§ 𝜆 tunes between original dataset and total fusion (dataset 
mean)

§ 𝜆 = 0: 𝑇 singleton clusters

§ 𝜆 ∈ 0,1 : Data samples begin to fuse into clusters

§ 𝜆 = 1: All samples in one cluster

Convex clustering as a characterization of sample similarity

K. Pelckmans, J. De Brabanter, J. A. Suykens, and B. De Moor, PASCAL 2005

Convex clustering tradeoff between fusing clusters and fitting to samples

Fidelity Fusion

nav@rice.edu 7



Convex clustering as a characterization of sample similarity
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Mixup for data augmentation via linear combinations of data pairs
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?

Non-Euclidean graph data is difficult to mixup

Label
Star: 1
Grid: 0

Label
Star: 0
Grid: 1

Label
Star: ?
Grid: ?
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Graph Mixup for Augmenting Data (GraphMAD)
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Graph Mixup for Augmenting Data (GraphMAD)

New data
Label: 0.5

M. Navarro and S. Segarra, ICASSP 2023nav@rice.edu

Step 1: Embed graphs

Step 2: Obtain mixture of embeddings

Step 3: Convert embedding mixture to 
graph

Original data
Label: 0

Original data
Label: 1
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Limit objects as embedding space
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Limit objects as embedding space

Convergence to graphon
in cut distance
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Limit objects as embedding space

Estimated graphon
	 7𝒲: 0,1 & → 0,1

Graph
𝐺

10
0

1

Graphon 
estimation
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Stochastic inversion of graphon embedding allows multiple views of new data

Graphon
	𝒲: 0,1 & → 0,1

Sampled graph
𝐺 ∼ 𝒲

10
0
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GraphMAD improves performance and outperforms linear mixup on all datasets

M. Navarro and S. Segarra, ICASSP 2023

Method DD PROTEINS ENZYMES AIDS MUTAG NCI109

Data mixup Label mixup 2 classes 2 classes 6 classes 2 classes 2 classes 2 classes

None None 68.77 ± 2.35 69.51 ± 1.20 26.43 ± 2.55 96.18 ± 2.57 84.59 ± 5.53 68.23 ± 2.13

Linear

Linear 67.01 ± 1.72 65.15 ± 2.53 24.88 ± 3.38 96.82 ± 1.39 85.71 ± 7.15 68.16 ± 2.72

Sigmoid 64.89 ± 1.49 68.42 ± 3.94 24.76 ± 4.10 96.07 ± 1.42 85.71 ± 4.63 65.96 ± 2.34

Logit 66.22 ± 3.82 69.25 ± 2.94 25.95 ± 5.48 96.07 ± 1.27 80.08 ± 5.60 66.81 ± 4.07

Cvx. Clust. 68.22 ± 3.71 69.38 ± 2.04 24.64 ± 2.39 95.86 ± 1.88 87.22 ± 4.96 65.01 ± 3.07

Cvx. Clust.

Linear 67.11 ± 1.56 67.51 ± 2.62 26.67 ± 6.49 97.15 ± 1.00 87.24 ± 4.21 68.61 ± 1.41

Sigmoid 68.23 ± 3.61 64.60 ± 5.07 32.62 ± 6.35 97.07 ± 1.35 85.20 ± 3.53 67.50 ± 2.06

Logit 70.07 ± 2.51 67.26 ± 2.84 25.71 ± 4.26 95.87 ± 1.47 80.10 ± 14.77 65.33 ± 3.35

Cvx. Clust. 70.44 ± 3.79 71.18 ± 3.98 24.52 ± 3.30 97.22 ± 0.54 85.71 ± 5.40 68.54 ± 3.16

Graph classification accuracy on molecule and bioinformatics datasets

Data augmentation with GraphMAD consistently outperforms linear 
mixup, and different label mixup functions can improve accuracy
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MAD directions

Mixup application ⟹ Beyond improving accuracy
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Machine learning models may act harmfully in the presence of sensitive information
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Dastin, Reuters 2018

Guilbeault, Nature 2024 Buolamwini and Gebru, FAT 2018



Group fairness encourages similar treatment for each group separately

Group fairness:  Treatment invariant to different values of sensitive attribute
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Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias

Bias due to underrepresented groups or shifts in distribution across groups

nav@rice.edu 22
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mixup

C.-Y. Chuang and Y. Mroueh, ICLR 2021



Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias
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FSGM: Pairwise mixup between source subgroup and target subgroup

Mixup with underrepresented subgroup improves imbalanced data
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FSGM: Pairwise mixup between source subgroup and target subgroup

Mixup across classes promotes learning separately per group
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Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias
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FSGM: Pairwise mixup between source subgroup and target subgroup

FSGM addresses two types of bias in data
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Unbalanced groups result in unfair treatment of underrepresented group
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Unbalanced groups: Model treatment heavily influenced by overrepresented group
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Mixup between classes of underrepresented group encourages 
more certain decision boundary
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Mixup between classes of underrepresented group encourages confident decision boundary

Fairness, 1 − ΔDP
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Fair SubGroup Mixup (FSGM) improves both accuracy and fairness above 
existing fairness and data augmentation methods

RF
     RF w. FSGM
     RF w. Van. Mix.
     RF w. DataAug
     RF w. Adv. Deb.
     MLP
     MLP w. FSGM
     MLP w. FMP
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Unbalanced classes can violate demographic parity
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Gaps between groups in minority class may 
result in demographic parity gap

Unbalanced classes: 



Unbalanced classes can violate demographic parity
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Mixup between groups of minority class encourages
similar group treatment, demographic parity
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Mixup within underrepresented class encourages demographic parity

Fairness, 1 − ΔDP
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RF
     RF w. FSGM
     RF w. Van. Mix.
     RF w. DataAug
     RF w. Adv. Deb.
     MLP
     MLP w. FSGM
     MLP w. FMP

Fair SubGroup Mixup (FSGM) improves accuracy
and achieves fairness rivaling the fairest method
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Law school admission bar passage with race as protected attribute

Fairness, 1 − ΔDP
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RF
     RF w. FSGM
     RF w. Van. Mix.
     RF w. Adv. Deb.

Class: Bar passage (yes or no)
Group: Race (white or non-white)
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Law school admission bar passage with race as protected attribute

Fairness, 1 − ΔDP

A
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RF
     RF w. FSGM
     RF w. Van. Mix.
     RF w. Adv. Deb.

On real-world benchmark dataset, FSGM improves fairness 
with robust accuracy compared to baselines
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MAD overview

Mixup method ⟹ Mixup using informative convex clustering

Mixup domain ⟹ Mixtures of non-Euclidean graphs

Mixup application ⟹ Applying mixup for improving model fairness
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MAD overview

Mixup method ⟹ Mixup using informative convex clustering

Mixup domain ⟹ Mixtures of non-Euclidean graphs

Mixup application ⟹ Applying mixup for improving model fairness

Next steps – Theoretical and empirical evaluation of convex clustering for 
different applications and domains

Next steps – Effects of mixtures of graphs for data augmentation via 
graphon theory

Next steps – Convex clustering mixup for group fairness, individual 
fairness, or problems involving intersectionality
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Complexon as simplicial complex limit object

Complexon

𝒲:H
)*#

0,1 )+# → 0,1

Dimension 1
Edge likelihoods

Dimension 2
Triangle likelihoods
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Complexon as simplicial complex limit object

Complexon

𝒲:H
)*#
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Sampled simplicial 
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Complexon as simplicial complex limit object

Estimated complexon

	 7𝒲:H
)*#

0,1 )+# → 0,1
Simplicial complex
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Simplicial Complex Mixup for Augmenting Data (SC-MAD)

New data
Label: 0.5

M. Navarro and S. Segarra, ICASSP 2024nav@rice.edu

Step 1: Embed simplicial complexes

Step 2: Obtain mixture of embeddings

Step 3: Convert embedding mixture to 
simplicial complex

Original data
Label: 0

Original data
Label: 1
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GraphMAD improves performance and outperforms linear mixup on all datasets

M. Navarro and S. Segarra, ICASSP 2023

Method COLLAB IMDB-B IMDB-M

Data mixup Label mixup 3 classes 2 classes 3 classes

None None 80.00 ± 0.96 73.14 ± 3.15 47.71 ± 4.25

Linear

Linear 77.60 ± 1.53 72.07 ± 2.06 47.24 ± 4.21

Sigmoid 78.21 ± 1.16 74.00 ± 2.14 49.67 ± 2.15

Logit 78.19 ± 1.61 72.64 ± 1.73 47.43 ± 2.45

Cvx. Clust. 78.41 ± 0.99 71.43 ± 3.25 47.29 ± 5.21

Cvx. Clust.

Linear 78.93 ± 2.63 70.57 ± 4.89 45.52 ± 4.09

Sigmoid 77.89 ± 1.30 75.00 ± 5.13 44.48 ± 2.78

Logit 80.39 ± 1.20 73.43 ± 4.75 48.76 ± 2.43

Cvx. Clust. 79.55 ± 2.29 71.43 ± 4.72 49.71 ± 4.33

Graph classification accuracy on social datasets

Data augmentation with GraphMAD consistently outperforms linear 
mixup, and different label mixup functions can improve accuracy
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SC-MAD for mixing complexons demonstrates consistent classification improvement

Method Vietoris-Rips MNIST

Data mixup Label mixup 2 classes 3 classes

None None 63.1 ± 1.67 78.2 ± 0.51

Linear

Linear 70.9 ± 0.51 80.2 ± 1.11

Sigmoid 71.9 ± 0.84 68.7 ± 0.88

Logit 59.4 ± 1.46 70.5 ± 0.33

Cvx. Clust. 66.9 ± 1.93 80.5 ± 0.57

Cvx. Clust.

Linear 68.8 ± 1.96 80.4 ± 1.10

Sigmoid 68.8 ± 1.56 81.9 ± 0.072

Logit 70.9 ± 0.64 81.7 ± 0.49

Cvx. Clust. 73.8 ± 0.57 85.6 ± 0.52

Simplicial complex classification accuracy on synthetic and real datasets

Both efficient linear mixup and informative convex clustering mixup 
improve classification performance

M. Navarro and S. Segarra, ICASSP 2024nav@rice.edu

MNIST image 0

v



Class-dependent structure in complexon mixtures

Class-discriminative structure is present in complexon mixtures

Mixup preserves class information when interpolating between classes

M. Navarro and S. Segarra, ICASSP 2024

Theorem   For a set of simplicial complexes 𝐾' , 𝑦' '"#
$  and their 

estimated complexons 7𝑊' '"#
$

, let 𝑊,-. = ∑'"#$ 𝛾' 7𝑊' for ∑'"#$ 𝛾' = 1 

denote a complexon mixture. Then, for the 𝑗-th estimate 7𝑊!

𝑡 𝐹,𝑊,-. − 𝑡 𝐹, 7𝑊! ≤+
'/!

𝛾'𝜌☐ 7𝑊' , 7𝑊!; 𝛽(1) 1*# ,

where 𝛽(1) is the number of 𝑐-simplices in 𝐹, and 𝜌☐ denotes the cut 
distance for complexons.

nav@rice.edu vi



Class-dependent structure in complexon mixtures

Class-discriminative structure is present in complexon mixtures

Mixup preserves class information when interpolating between classes

M. Navarro and S. Segarra, ICASSP 2024

Theorem   For a set of simplicial complexes 𝐾' , 𝑦' '"#
$  and their 

estimated complexons 7𝑊' '"#
$

, let 𝑊,-. = ∑'"#$ 𝛾' 7𝑊' for ∑'"#$ 𝛾' = 1 

denote a complexon mixture. 

𝑡 𝐹,𝑊,-. − 𝑡 𝐹, 7𝑊! → 0,

where 𝐹 is any finite simplicial complex and 𝑡 𝐹,𝑊  is the 
homomorphism density of 𝐹 in 𝑊.

nav@rice.edu

Then, for the 𝑗-th estimate 7𝑊!, as 𝛾! → 1 or 7𝑊! → ∑'/!
3#

#43$
7𝑊',

vi



Class-dependent structure in complexon mixtures

Class-discriminative structure is present in complexon mixtures

Mixup preserves class information when interpolating between classes

M. Navarro and S. Segarra, ICASSP 2024nav@rice.edu

Theorem   For a set of simplicial complexes 𝐾' , 𝑦' '"#
$  and their 

estimated complexons 7𝑊' '"#
$

, let 𝑊,-. = ∑'"#$ 𝛾' 7𝑊' for ∑'"#$ 𝛾' = 1 

denote a complexon mixture. 

𝑡 𝐹,𝑊,-. − 𝑡 𝐹, 7𝑊! → 0,

where 𝐹 is any finite simplicial complex and 𝑡 𝐹,𝑊  is the 
homomorphism density of 𝐹 in 𝑊.

Then, for the 𝑗-th estimate 7𝑊!, as 𝛾! → 1 or 7𝑊! → ∑'/!
3#

#43$
7𝑊',

vi



Class-dependent structure in complexon mixtures

Class-discriminative structure is present in complexon mixtures

Mixup preserves class information when interpolating between classes

M. Navarro and S. Segarra, ICASSP 2024nav@rice.edu

Theorem   For a set of simplicial complexes 𝐾' , 𝑦' '"#
$  and their 

estimated complexons 7𝑊' '"#
$

, let 𝑊,-. = ∑'"#$ 𝛾' 7𝑊' for ∑'"#$ 𝛾' = 1 

denote a complexon mixture. 

𝑡 𝐹,𝑊,-. − 𝑡 𝐹, 7𝑊! → 0,

where 𝐹 is any finite simplicial complex and 𝑡 𝐹,𝑊  is the 
homomorphism density of 𝐹 in 𝑊.

Then, for the 𝑗-th estimate 7𝑊!, as 𝛾! → 1 or 7𝑊! → ∑'/!
3#

#43$
7𝑊',

vi



Heavily underrepresented subgroup as underrepresented class and group
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Minority subgroup sensitive to 
unfair distribution shifts

Underrepresented subgroup:



Heavily underrepresented subgroup as underrepresented class and group
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Unbalanced groups and classes
with distribution shift that contributes bias
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Heavily underrepresented subgroup as underrepresented class and group

Fairness, 1 − ΔDP

A
cc
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cy

RF
     RF w. FSGM
     RF w. Van. Mix.
     RF w. DataAug
     RF w. Adv. Deb.
     MLP
     MLP w. FSGM
     MLP w. FMP

Fair SubGroup Mixup (FSGM) improves fairness
while maintaining or improving accuracy
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