MAD Overview: Mixup for Augmenting Data in Myriad Scenarios

Madeline Navarro and Santiago Segarra

Department of Electrical and Computer Engineering, Rice University

11 Jul 2024

Contact:

Email: nav@rice.edu

Data augmentation as implicit regularization

Data augmentation as implicit regularization

Data augmentation as implicit regularization

More training data

Avoid overfitting with intelligently generated data

Mixup for data augmentation via linear combinations of data pairs

MAD directions

 \Rightarrow Beyond pairwise linear mixup

Mixup domain ⇒ Beyond Euclidean domains

Mixup application \Rightarrow Beyond improving accuracy

When does pairwise linear mixup fail?

Linear mixup may add uncertainty in ways that are unhelpful

When does pairwise linear mixup fail?

Label: Class 0: 1

Class 1: 0

Pairwise mixup ignores most of the dataset when mixing two samples

When does pairwise linear mixup fail?

Label:

Class 0: 0

Class 1: 1

Label:

Class 0: 1

Class 1: 0

Pairwise mixup ignores most of the dataset when mixing two samples

Pairwise mixup ignores most of the dataset when mixing two samples

Clustering uses sample similarity to globally characterize datasets by their groups

Clustering methods such as hierarchical clustering use relationships among data to assign data to groups

Clustering uses sample similarity to globally characterize datasets by their groups

Clustering methods such as hierarchical clustering use relationships among data to assign data to groups

$$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \mathbf{x}_{j}\right\|_{2}^{2} + \frac{\lambda}{1-\lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$

Convex clustering tradeoff between fusing clusters and fitting to samples

$$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \mathbf{x}_{j}\right\|_{2}^{2} + \frac{\lambda}{1 - \lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$

- \mathbf{x}_i : Each sample
- $\hat{\mathbf{u}}_i(\lambda)$: Cluster centroid for each sample at $\lambda \in [0,1]$
- λ : Fusion parameter

Convex clustering tradeoff between fusing clusters and fitting to samples

$$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \mathbf{x}_{j}\right\|_{2}^{2} + \frac{\lambda}{1 - \lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$

- λ tunes between original dataset and total fusion (dataset mean)
 - $\lambda = 0$: T singleton clusters
 - $\lambda \in (0,1)$: Data samples begin to fuse into clusters
 - $\lambda = 1$: All samples in one cluster

Convex clustering tradeoff between fusing clusters and fitting to samples

Class 1
Class 2

MAD directions

 \Rightarrow Beyond pairwise linear mixup

Mixup domain ⇒ Beyond Euclidean domains

Mixup application \Rightarrow Beyond improving accuracy

Mixup for data augmentation via linear combinations of data pairs

Non-Euclidean graph data is difficult to mixup

Step 1: Embed graphs

Step 1: Embed graphs

Step 2: Obtain mixture of embeddings

50 nodes

100 nodes

Limit objects as embedding space

200 nodes

Limit objects as embedding space

500 nodes

Convergence to graphon in cut distance

Step 1: Embed graphs

Step 1: Embed graphs

Step 2: Obtain mixture of embeddings

Graph Mixup for Augmenting Data (GraphMAD)

Step 1: Embed graphs

Step 2: Obtain mixture of embeddings

Graph Mixup for Augmenting Data (GraphMAD)

GraphMAD improves performance and outperforms linear mixup on all datasets

Graph classification accuracy on molecule and bioinformatics datasets

Method		DD	PROTEINS	ENZYMES	AIDS	MUTAG	NCI109
Data mixup	Label mixup	2 classes	2 classes	6 classes	2 classes	2 classes	2 classes
None	None	68.77 ± 2.35	69.51 ± 1.20	26.43 ± 2.55	96.18 ± 2.57	84.59 ± 5.53	68.23 ± 2.13
Linear	Linear	67.01 ± 1.72	65.15 ± 2.53	24.88 ± 3.38	96.82 ± 1.39	85.71 ± 7.15	68.16 ± 2.72
	Sigmoid	64.89 ± 1.49	68.42 ± 3.94	24.76 ± 4.10	96.07 ± 1.42	85.71 ± 4.63	65.96 ± 2.34
	Logit	66.22 ± 3.82	69.25 ± 2.94	25.95 ± 5.48	96.07 ± 1.27	80.08 ± 5.60	66.81 ± 4.07
	Cvx. Clust.	68.22 ± 3.71	69.38 ± 2.04	24.64 ± 2.39	95.86 ± 1.88	87.22 ± 4.96	65.01 ± 3.07
Cvx. Clust.	Linear	67.11 ± 1.56	67.51 ± 2.62	26.67 ± 6.49	97.15 ± 1.00	87.24 ± 4.21	68.61 ± 1.41
	Sigmoid	68.23 ± 3.61	64.60 ± 5.07	32.62 ± 6.35	97.07 ± 1.35	85.20 ± 3.53	67.50 ± 2.06
	Logit	70.07 ± 2.51	67.26 ± 2.84	25.71 ± 4.26	95.87 ± 1.47	80.10 ± 14.77	65.33 ± 3.35
	Cvx. Clust.	70.44 ± 3.79	71.18 ± 3.98	24.52 ± 3.30	97.22 ± 0.54	85.71 ± 5.40	68.54 ± 3.16

Data augmentation with GraphMAD consistently outperforms linear mixup, and different label mixup functions can improve accuracy

MAD directions

 \Rightarrow Beyond pairwise linear mixup

Mixup domain ⇒ Beyond Euclidean domains

Mixup application \Rightarrow Beyond improving accuracy

Machine learning models may act harmfully in the presence of sensitive information

World

Insight - Amazon scraps secret AI recruiting tool that showed bias against women

Dastin, Reuters 2018

Online images amplify gender bias

<u>Douglas Guilbeault</u> , <u>Solène Delecourt</u>, <u>Tasker Hull</u>, <u>Bhargav Srinivasa Desikan</u>, <u>Mark Chu</u> & <u>Ethan Nadler</u>

Nature **626**, 1049–1055 (2024) Cite this article

Guilbeault, Nature 2024

Buolamwini and Gebru, FAT 2018

Group fairness: Treatment invariant to different values of sensitive attribute

Group fairness: Treatment invariant to different values of sensitive attribute

Demographic parity: Predictions $\hat{Y} = f(X)$ independent of sensitive attribute $Z \in \{0,1\}$

$$\mathbb{P}\big[\hat{Y} = y|Z = 0\big] = \mathbb{P}\big[\hat{Y} = y|Z = 1\big]$$

Group fairness: Treatment invariant to different values of sensitive attribute

Demographic parity: Predictions $\hat{Y} = f(X)$ independent of sensitive attribute $Z \in \{0,1\}$

$$\mathbb{P}\big[\hat{Y} = y | Z = 0\big] = \mathbb{P}\big[\hat{Y} = y | Z = 1\big]$$

In practice:
$$\Delta DP = \widehat{\mathbb{E}}[\widehat{Y} = y | Z = 0] - \widehat{\mathbb{E}}[\widehat{Y} = y | Z = 1]$$

Group fairness: Treatment invariant to different values of sensitive attribute

Demographic parity: Predictions $\hat{Y} = f(X)$ independent of sensitive attribute $Z \in \{0,1\}$

$$\mathbb{P}\big[\hat{Y} = y | Z = 0\big] = \mathbb{P}\big[\hat{Y} = y | Z = 1\big]$$

In practice: $\Delta DP = \widehat{\mathbb{E}}[\widehat{Y} = y | Z = 0] - \widehat{\mathbb{E}}[\widehat{Y} = y | Z = 1] = 0$ DP achieved!

Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias

Bias due to underrepresented groups or shifts in distribution across groups

FSGM: Pairwise mixup between source subgroup and target subgroup

FSGM: Pairwise mixup between source subgroup and target subgroup

Mixup across groups promotes invariance between groups

FSGM: Pairwise mixup between source subgroup and target subgroup Mixup across classes promotes learning separately per group

FSGM: Pairwise mixup between source subgroup and target subgroup

FSGM addresses two types of bias in data

Principal component 1

Unbalanced groups: Model treatment heavily influenced by overrepresented group

Principal component 1

Mixup between classes of underrepresented group encourages more certain decision boundary

Fair SubGroup Mixup (FSGM) improves both accuracy and fairness above existing fairness and data augmentation methods

Unbalanced classes: Gaps between groups in minority class may result in demographic parity gap

25

Principal component 1

25

Mixup between groups of minority class encourages similar group treatment, demographic parity

26

Fairness, $1 - \Delta DP$

Fair SubGroup Mixup (FSGM) improves accuracy and achieves fairness rivaling the fairest method

Law school admission bar passage with race as protected attribute

Class: Bar passage (yes or no)

Group: Race (white or non-white)

On real-world benchmark dataset, FSGM improves fairness with robust accuracy compared to baselines

MAD overview

 \Rightarrow Mixup using informative convex clustering

Mixup domain ⇒ Mixtures of non-Euclidean graphs

Mixup application \Rightarrow Applying mixup for improving model fairness

MAD overview

 \Rightarrow Mixup using informative convex clustering

Next steps – Theoretical and empirical evaluation of convex clustering for different applications and domains

Mixup domain ⇒ Mixtures of non-Euclidean graphs

Mixup application \Rightarrow Applying mixup for improving model fairness

MAD overv<u>iew</u>

 \Rightarrow Mixup using informative convex clustering

Next steps – Theoretical and empirical evaluation of convex clustering for different applications and domains

 \Rightarrow Mixtures of non-Euclidean graphs

Next steps – Effects of mixtures of graphs for data augmentation via graphon theory

Mixup application \Rightarrow Applying mixup for improving model fairness

MAD overview

 \Rightarrow Mixup using informative convex clustering

Next steps – Theoretical and empirical evaluation of convex clustering for different applications and domains

 \Rightarrow Mixtures of non-Euclidean graphs

Next steps – Effects of mixtures of graphs for data augmentation via graphon theory

Mixup application \Rightarrow Applying mixup for improving model fairness

Next steps – Convex clustering mixup for group fairness, individual fairness, or problems involving intersectionality

Complexon as simplicial complex limit object

Complexon
$$: [0,1]^{d+1} \to [0,1]$$

Complexon as simplicial complex limit object

Complexon
$$W: \bigsqcup_{d \ge 1} [0,1]^{d+1} \to [0,1]$$

Sampled simplicial complex $K \sim W$

Complexon as simplicial complex limit object

Estimated complexon

$$\widehat{\mathcal{W}}: \bigsqcup_{d \ge 1} [0,1]^{d+1} \to [0,1]$$

Simplicial complex K

Simplicial Complex Mixup for Augmenting Data (SC-MAD)

GraphMAD improves performance and outperforms linear mixup on all datasets

Graph classification accuracy on social datasets

Method		COLLAB	IMDB-B	IMDB-M	
Data mixup	Label mixup	3 classes	2 classes	3 classes	
None	None	80.00 ± 0.96	73.14 ± 3.15	47.71 ± 4.25	
Linear	Linear	77.60 ± 1.53	72.07 ± 2.06	47.24 ± 4.21	
	Sigmoid	78.21 ± 1.16	74.00 ± 2.14	49.67 ± 2.15	
	Logit	78.19 ± 1.61	72.64 ± 1.73	47.43 ± 2.45	
	Cvx. Clust.	78.41 ± 0.99	71.43 ± 3.25	47.29 ± 5.21	
Cvx. Clust.	Linear	78.93 ± 2.63	70.57 ± 4.89	45.52 ± 4.09	
	Sigmoid	77.89 ± 1.30	75.00 ± 5.13	44.48 ± 2.78	
	Logit	80.39 ± 1.20	73.43 ± 4.75	48.76 ± 2.43	
	Cvx. Clust.	79.55 ± 2.29	71.43 ± 4.72	49.71 ± 4.33	

Data augmentation with GraphMAD consistently outperforms linear mixup, and different label mixup functions can improve accuracy

SC-MAD for mixing complexons demonstrates consistent classification improvement

Simplicial complex classification accuracy on synthetic and real datasets

Met	hod	Vietoris-Rips	MNIST	
Data mixup	Label mixup	2 classes	3 classes	
None	None	63.1 ± 1.67	78.2 ± 0.51	
	Linear	70.9 ± 0.51	80.2 ± 1.11	
Lincon	Sigmoid	71.9 ± 0.84	68.7 ± 0.88	
Linear	Logit	59.4 ± 1.46	70.5 ± 0.33	
	Cvx. Clust.	66.9 ± 1.93	80.5 ± 0.57	
	Linear	68.8 ± 1.96	80.4 ± 1.10	
Cvx. Clust.	Sigmoid	68.8 ± 1.56	81.9 ± 0.072	
Cvx. Clust.	Logit	70.9 ± 0.64	81.7 ± 0.49	
	Cvx. Clust.	73.8 ± 0.57	85.6 ± 0.52	

MNIST image 0

Both efficient linear mixup and informative convex clustering mixup improve classification performance

Theorem For a set of simplicial complexes $\{(K_i, y_i)\}_{i=1}^T$ and their estimated complexons $\{\widehat{W}_i\}_{i=1}^T$, let $W_{\text{new}} = \sum_{i=1}^T \gamma_i \widehat{W}_i$ for $\sum_{i=1}^T \gamma_i = 1$ denote a complexon mixture.

Theorem For a set of simplicial complexes $\{(K_i, y_i)\}_{i=1}^T$ and their estimated complexons $\{\widehat{W}_i\}_{i=1}^T$, let $W_{\text{new}} = \sum_{i=1}^T \gamma_i \widehat{W}_i$ for $\sum_{i=1}^T \gamma_i = 1$ denote a complexon mixture.

Then, for the *j*-th estimate \widehat{W}_j , as $\gamma_j \to 1$ or $\widehat{W}_j \to \sum_{i \neq j} \frac{\gamma_i}{1 - \gamma_j} \widehat{W}_i$, $\left| t(F, W_{\text{new}}) - t(F, \widehat{W}_i) \right| \to 0$,

where F is any finite simplicial complex and t(F, W) is the homomorphism density of F in W.

Theorem For a set of simplicial complexes $\{(K_i, y_i)\}_{i=1}^T$ and their estimated complexons $\{\widehat{W}_i\}_{i=1}^T$, let $W_{\text{new}} = \sum_{i=1}^T \gamma_i \widehat{W}_i$ for $\sum_{i=1}^T \gamma_i = 1$ denote a complexon mixture.

Then, for the *j*-th estimate \widehat{W}_j , as $\gamma_j \to 1$ or $\widehat{W}_j \to \sum_{i \neq j} \frac{\gamma_i}{1 - \gamma_j} \widehat{W}_i$, $\left| t(F, W_{\text{new}}) - t(F, \widehat{W}_j) \right| \to 0$,

where F is any finite simplicial complex and t(F, W) is the homomorphism density of F in W.

Class-discriminative structure is present in complexon mixtures

Theorem For a set of simplicial complexes $\{(K_i, y_i)\}_{i=1}^T$ and their estimated complexons $\{\widehat{W}_i\}_{i=1}^T$, let $W_{\text{new}} = \sum_{i=1}^T \gamma_i \widehat{W}_i$ for $\sum_{i=1}^T \gamma_i = 1$ denote a complexon mixture.

Then, for the *j*-th estimate \widehat{W}_j , as $\gamma_j \to 1$ or $\widehat{W}_j \to \sum_{i \neq j} \frac{\gamma_i}{1 - \gamma_j} \widehat{W}_i$, $\left| t(F, W_{\text{new}}) - t(F, \widehat{W}_j) \right| \to 0$,

where F is any finite simplicial complex and t(F, W) is the homomorphism density of F in W.

Class-discriminative structure is present in complexon mixtures

Mixup preserves class information when interpolating between classes

Underrepresented subgroup: Minority subgroup sensitive to unfair distribution shifts

Unbalanced groups and classes with distribution shift that contributes bias

Fairness, $1 - \Delta DP$

Fair SubGroup Mixup (FSGM) improves fairness while maintaining or improving accuracy