MAD Overview: Mixup for Augmenting Data in Myriad Scenarios Madeline Navarro and Santiago Segarra Department of Electrical and Computer Engineering, Rice University 11 Jul 2024 **Contact:** Email: nav@rice.edu # Data augmentation as implicit regularization ## Data augmentation as implicit regularization ## Data augmentation as implicit regularization More training data Avoid overfitting with intelligently generated data #### Mixup for data augmentation via linear combinations of data pairs #### MAD directions \Rightarrow Beyond pairwise linear mixup Mixup domain ⇒ Beyond Euclidean domains Mixup application \Rightarrow Beyond improving accuracy #### When does pairwise linear mixup fail? Linear mixup may add uncertainty in ways that are unhelpful #### When does pairwise linear mixup fail? Label: Class 0: 1 Class 1: 0 Pairwise mixup ignores most of the dataset when mixing two samples #### When does pairwise linear mixup fail? Label: Class 0: 0 Class 1: 1 Label: Class 0: 1 Class 1: 0 Pairwise mixup ignores most of the dataset when mixing two samples Pairwise mixup ignores most of the dataset when mixing two samples #### Clustering uses sample similarity to globally characterize datasets by their groups Clustering methods such as hierarchical clustering use relationships among data to assign data to groups #### Clustering uses sample similarity to globally characterize datasets by their groups Clustering methods such as hierarchical clustering use relationships among data to assign data to groups $$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \mathbf{x}_{j}\right\|_{2}^{2} + \frac{\lambda}{1-\lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$ Convex clustering tradeoff between fusing clusters and fitting to samples $$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \mathbf{x}_{j}\right\|_{2}^{2} + \frac{\lambda}{1 - \lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$ - \mathbf{x}_i : Each sample - $\hat{\mathbf{u}}_i(\lambda)$: Cluster centroid for each sample at $\lambda \in [0,1]$ - λ : Fusion parameter Convex clustering tradeoff between fusing clusters and fitting to samples $$\left\{\widehat{\mathbf{u}}_{j}(\lambda)\right\}_{j=1}^{T} = \underset{\mathbf{u}}{\operatorname{argmin}} \sum_{j=1}^{T} \left\|\mathbf{u}_{j} - \mathbf{x}_{j}\right\|_{2}^{2} + \frac{\lambda}{1 - \lambda} \sum_{i < j} w_{ij} \left\|\mathbf{u}_{i} - \mathbf{u}_{j}\right\|_{1}$$ - λ tunes between original dataset and total fusion (dataset mean) - $\lambda = 0$: T singleton clusters - $\lambda \in (0,1)$: Data samples begin to fuse into clusters - $\lambda = 1$: All samples in one cluster Convex clustering tradeoff between fusing clusters and fitting to samples Class 1 Class 2 #### MAD directions \Rightarrow Beyond pairwise linear mixup Mixup domain ⇒ Beyond Euclidean domains Mixup application \Rightarrow Beyond improving accuracy #### Mixup for data augmentation via linear combinations of data pairs #### Non-Euclidean graph data is difficult to mixup **Step 1:** Embed graphs **Step 1:** Embed graphs **Step 2:** Obtain mixture of embeddings 50 nodes 100 nodes ## Limit objects as embedding space 200 nodes # Limit objects as embedding space 500 nodes Convergence to graphon in cut distance **Step 1:** Embed graphs **Step 1:** Embed graphs **Step 2:** Obtain mixture of embeddings # Graph Mixup for Augmenting Data (GraphMAD) **Step 1:** Embed graphs **Step 2:** Obtain mixture of embeddings # Graph Mixup for Augmenting Data (GraphMAD) ### GraphMAD improves performance and outperforms linear mixup on all datasets #### Graph classification accuracy on molecule and bioinformatics datasets | Method | | DD | PROTEINS | ENZYMES | AIDS | MUTAG | NCI109 | |-------------|-------------|------------------|------------------|------------------|------------------|-------------------|------------------| | Data mixup | Label mixup | 2 classes | 2 classes | 6 classes | 2 classes | 2 classes | 2 classes | | None | None | 68.77 ± 2.35 | 69.51 ± 1.20 | 26.43 ± 2.55 | 96.18 ± 2.57 | 84.59 ± 5.53 | 68.23 ± 2.13 | | Linear | Linear | 67.01 ± 1.72 | 65.15 ± 2.53 | 24.88 ± 3.38 | 96.82 ± 1.39 | 85.71 ± 7.15 | 68.16 ± 2.72 | | | Sigmoid | 64.89 ± 1.49 | 68.42 ± 3.94 | 24.76 ± 4.10 | 96.07 ± 1.42 | 85.71 ± 4.63 | 65.96 ± 2.34 | | | Logit | 66.22 ± 3.82 | 69.25 ± 2.94 | 25.95 ± 5.48 | 96.07 ± 1.27 | 80.08 ± 5.60 | 66.81 ± 4.07 | | | Cvx. Clust. | 68.22 ± 3.71 | 69.38 ± 2.04 | 24.64 ± 2.39 | 95.86 ± 1.88 | 87.22 ± 4.96 | 65.01 ± 3.07 | | Cvx. Clust. | Linear | 67.11 ± 1.56 | 67.51 ± 2.62 | 26.67 ± 6.49 | 97.15 ± 1.00 | 87.24 ± 4.21 | 68.61 ± 1.41 | | | Sigmoid | 68.23 ± 3.61 | 64.60 ± 5.07 | 32.62 ± 6.35 | 97.07 ± 1.35 | 85.20 ± 3.53 | 67.50 ± 2.06 | | | Logit | 70.07 ± 2.51 | 67.26 ± 2.84 | 25.71 ± 4.26 | 95.87 ± 1.47 | 80.10 ± 14.77 | 65.33 ± 3.35 | | | Cvx. Clust. | 70.44 ± 3.79 | 71.18 ± 3.98 | 24.52 ± 3.30 | 97.22 ± 0.54 | 85.71 ± 5.40 | 68.54 ± 3.16 | Data augmentation with GraphMAD consistently outperforms linear mixup, and different label mixup functions can improve accuracy #### MAD directions \Rightarrow Beyond pairwise linear mixup Mixup domain ⇒ Beyond Euclidean domains Mixup application \Rightarrow Beyond improving accuracy ### Machine learning models may act harmfully in the presence of sensitive information World Insight - Amazon scraps secret AI recruiting tool that showed bias against women Dastin, Reuters 2018 #### Online images amplify gender bias <u>Douglas Guilbeault</u> , <u>Solène Delecourt</u>, <u>Tasker Hull</u>, <u>Bhargav Srinivasa Desikan</u>, <u>Mark Chu</u> & <u>Ethan Nadler</u> *Nature* **626**, 1049–1055 (2024) Cite this article Guilbeault, Nature 2024 Buolamwini and Gebru, FAT 2018 **Group fairness**: Treatment invariant to different values of sensitive attribute **Group fairness**: Treatment invariant to different values of sensitive attribute **Demographic parity**: Predictions $\hat{Y} = f(X)$ independent of sensitive attribute $Z \in \{0,1\}$ $$\mathbb{P}\big[\hat{Y} = y|Z = 0\big] = \mathbb{P}\big[\hat{Y} = y|Z = 1\big]$$ **Group fairness**: Treatment invariant to different values of sensitive attribute **Demographic parity**: Predictions $\hat{Y} = f(X)$ independent of sensitive attribute $Z \in \{0,1\}$ $$\mathbb{P}\big[\hat{Y} = y | Z = 0\big] = \mathbb{P}\big[\hat{Y} = y | Z = 1\big]$$ In practice: $$\Delta DP = \widehat{\mathbb{E}}[\widehat{Y} = y | Z = 0] - \widehat{\mathbb{E}}[\widehat{Y} = y | Z = 1]$$ **Group fairness**: Treatment invariant to different values of sensitive attribute **Demographic parity**: Predictions $\hat{Y} = f(X)$ independent of sensitive attribute $Z \in \{0,1\}$ $$\mathbb{P}\big[\hat{Y} = y | Z = 0\big] = \mathbb{P}\big[\hat{Y} = y | Z = 1\big]$$ In practice: $\Delta DP = \widehat{\mathbb{E}}[\widehat{Y} = y | Z = 0] - \widehat{\mathbb{E}}[\widehat{Y} = y | Z = 1] = 0$ DP achieved! ### Fair SubGroup Mixup (FSGM) mixes samples across subgroups to mitigate bias Bias due to underrepresented groups or shifts in distribution across groups **FSGM**: Pairwise mixup between source subgroup and target subgroup FSGM: Pairwise mixup between source subgroup and target subgroup Mixup across groups promotes invariance between groups **FSGM**: Pairwise mixup between source subgroup and target subgroup Mixup across classes promotes learning separately per group FSGM: Pairwise mixup between source subgroup and target subgroup FSGM addresses two types of bias in data Principal component 1 **Unbalanced groups**: Model treatment heavily influenced by overrepresented group Principal component 1 Mixup between classes of underrepresented group encourages more certain decision boundary Fair SubGroup Mixup (FSGM) improves both accuracy and fairness above existing fairness and data augmentation methods **Unbalanced classes**: Gaps between groups in minority class may result in demographic parity gap 25 Principal component 1 25 Mixup between groups of minority class encourages similar group treatment, demographic parity 26 Fairness, $1 - \Delta DP$ Fair SubGroup Mixup (FSGM) improves accuracy and achieves fairness rivaling the fairest method ### Law school admission bar passage with race as protected attribute **Class**: Bar passage (yes or no) **Group**: Race (white or non-white) On real-world benchmark dataset, FSGM improves fairness with robust accuracy compared to baselines #### MAD overview \Rightarrow Mixup using informative convex clustering Mixup domain ⇒ Mixtures of non-Euclidean graphs Mixup application \Rightarrow Applying mixup for improving model fairness #### MAD overview \Rightarrow Mixup using informative convex clustering **Next steps** – Theoretical and empirical evaluation of convex clustering for different applications and domains Mixup domain ⇒ Mixtures of non-Euclidean graphs Mixup application \Rightarrow Applying mixup for improving model fairness #### MAD overv<u>iew</u> \Rightarrow Mixup using informative convex clustering **Next steps** – Theoretical and empirical evaluation of convex clustering for different applications and domains \Rightarrow Mixtures of non-Euclidean graphs **Next steps** – Effects of mixtures of graphs for data augmentation via graphon theory Mixup application \Rightarrow Applying mixup for improving model fairness #### MAD overview \Rightarrow Mixup using informative convex clustering **Next steps** – Theoretical and empirical evaluation of convex clustering for different applications and domains \Rightarrow Mixtures of non-Euclidean graphs **Next steps** – Effects of mixtures of graphs for data augmentation via graphon theory Mixup application \Rightarrow Applying mixup for improving model fairness **Next steps** – Convex clustering mixup for group fairness, individual fairness, or problems involving intersectionality ## Complexon as simplicial complex limit object Complexon $$: [0,1]^{d+1} \to [0,1]$$ ### Complexon as simplicial complex limit object Complexon $$W: \bigsqcup_{d \ge 1} [0,1]^{d+1} \to [0,1]$$ Sampled simplicial complex $K \sim W$ ### Complexon as simplicial complex limit object Estimated complexon $$\widehat{\mathcal{W}}: \bigsqcup_{d \ge 1} [0,1]^{d+1} \to [0,1]$$ Simplicial complex K ## Simplicial Complex Mixup for Augmenting Data (SC-MAD) ### GraphMAD improves performance and outperforms linear mixup on all datasets #### Graph classification accuracy on social datasets | Method | | COLLAB | IMDB-B | IMDB-M | | |-------------|-------------|------------------|------------------|------------------|--| | Data mixup | Label mixup | 3 classes | 2 classes | 3 classes | | | None | None | 80.00 ± 0.96 | 73.14 ± 3.15 | 47.71 ± 4.25 | | | Linear | Linear | 77.60 ± 1.53 | 72.07 ± 2.06 | 47.24 ± 4.21 | | | | Sigmoid | 78.21 ± 1.16 | 74.00 ± 2.14 | 49.67 ± 2.15 | | | | Logit | 78.19 ± 1.61 | 72.64 ± 1.73 | 47.43 ± 2.45 | | | | Cvx. Clust. | 78.41 ± 0.99 | 71.43 ± 3.25 | 47.29 ± 5.21 | | | Cvx. Clust. | Linear | 78.93 ± 2.63 | 70.57 ± 4.89 | 45.52 ± 4.09 | | | | Sigmoid | 77.89 ± 1.30 | 75.00 ± 5.13 | 44.48 ± 2.78 | | | | Logit | 80.39 ± 1.20 | 73.43 ± 4.75 | 48.76 ± 2.43 | | | | Cvx. Clust. | 79.55 ± 2.29 | 71.43 ± 4.72 | 49.71 ± 4.33 | | Data augmentation with GraphMAD consistently outperforms linear mixup, and different label mixup functions can improve accuracy ## SC-MAD for mixing complexons demonstrates consistent classification improvement #### Simplicial complex classification accuracy on synthetic and real datasets | Met | hod | Vietoris-Rips | MNIST | | |-------------|-------------|-----------------|------------------|--| | Data mixup | Label mixup | 2 classes | 3 classes | | | None | None | 63.1 ± 1.67 | 78.2 ± 0.51 | | | | Linear | 70.9 ± 0.51 | 80.2 ± 1.11 | | | Lincon | Sigmoid | 71.9 ± 0.84 | 68.7 ± 0.88 | | | Linear | Logit | 59.4 ± 1.46 | 70.5 ± 0.33 | | | | Cvx. Clust. | 66.9 ± 1.93 | 80.5 ± 0.57 | | | | Linear | 68.8 ± 1.96 | 80.4 ± 1.10 | | | Cvx. Clust. | Sigmoid | 68.8 ± 1.56 | 81.9 ± 0.072 | | | Cvx. Clust. | Logit | 70.9 ± 0.64 | 81.7 ± 0.49 | | | | Cvx. Clust. | 73.8 ± 0.57 | 85.6 ± 0.52 | | MNIST image 0 Both efficient linear mixup and informative convex clustering mixup improve classification performance **Theorem** For a set of simplicial complexes $\{(K_i, y_i)\}_{i=1}^T$ and their estimated complexons $\{\widehat{W}_i\}_{i=1}^T$, let $W_{\text{new}} = \sum_{i=1}^T \gamma_i \widehat{W}_i$ for $\sum_{i=1}^T \gamma_i = 1$ denote a complexon mixture. **Theorem** For a set of simplicial complexes $\{(K_i, y_i)\}_{i=1}^T$ and their estimated complexons $\{\widehat{W}_i\}_{i=1}^T$, let $W_{\text{new}} = \sum_{i=1}^T \gamma_i \widehat{W}_i$ for $\sum_{i=1}^T \gamma_i = 1$ denote a complexon mixture. Then, for the *j*-th estimate \widehat{W}_j , as $\gamma_j \to 1$ or $\widehat{W}_j \to \sum_{i \neq j} \frac{\gamma_i}{1 - \gamma_j} \widehat{W}_i$, $\left| t(F, W_{\text{new}}) - t(F, \widehat{W}_i) \right| \to 0$, where F is any finite simplicial complex and t(F, W) is the homomorphism density of F in W. **Theorem** For a set of simplicial complexes $\{(K_i, y_i)\}_{i=1}^T$ and their estimated complexons $\{\widehat{W}_i\}_{i=1}^T$, let $W_{\text{new}} = \sum_{i=1}^T \gamma_i \widehat{W}_i$ for $\sum_{i=1}^T \gamma_i = 1$ denote a complexon mixture. Then, for the *j*-th estimate \widehat{W}_j , as $\gamma_j \to 1$ or $\widehat{W}_j \to \sum_{i \neq j} \frac{\gamma_i}{1 - \gamma_j} \widehat{W}_i$, $\left| t(F, W_{\text{new}}) - t(F, \widehat{W}_j) \right| \to 0$, where F is any finite simplicial complex and t(F, W) is the homomorphism density of F in W. Class-discriminative structure is present in complexon mixtures **Theorem** For a set of simplicial complexes $\{(K_i, y_i)\}_{i=1}^T$ and their estimated complexons $\{\widehat{W}_i\}_{i=1}^T$, let $W_{\text{new}} = \sum_{i=1}^T \gamma_i \widehat{W}_i$ for $\sum_{i=1}^T \gamma_i = 1$ denote a complexon mixture. Then, for the *j*-th estimate \widehat{W}_j , as $\gamma_j \to 1$ or $\widehat{W}_j \to \sum_{i \neq j} \frac{\gamma_i}{1 - \gamma_j} \widehat{W}_i$, $\left| t(F, W_{\text{new}}) - t(F, \widehat{W}_j) \right| \to 0$, where F is any finite simplicial complex and t(F, W) is the homomorphism density of F in W. Class-discriminative structure is present in complexon mixtures Mixup preserves class information when interpolating between classes **Underrepresented subgroup:** Minority subgroup sensitive to unfair distribution shifts Unbalanced groups and classes with distribution shift that contributes bias Fairness, $1 - \Delta DP$ Fair SubGroup Mixup (FSGM) improves fairness while maintaining or improving accuracy