
Exploiting the Structure of Two Graphs via
Graph Neural Networks

Victor M. Tenorio

King Juan Carlos University - Madrid (Spain)

In collaboration with Antonio G. Marques

July 10, 2024

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 1 / 19

Index

Introduction

Problem formulation
Numerical Results

Connections with CCA and SSL
Numerical Results

Conclusions

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 2 / 19

Introducción

▶ Each day huge amounts of data are generated

⇒ Irregular structure

▶ Need to find new ways to

⇒ Represent the data

⇒ Learn from it

▶ Representation of irregular data

⇒ Via more complex structures → graphs

▶ Learning over irregular data

⇒ New machine learning algorithms

▶ Join both in graph neural networks (GNNs)

▶ This work: input and output are defined over different graphs

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 3 / 19

Preliminaries of Graph Signal Processing

▶ A graph G: N nodes and links connecting them

⇒ G ≡ (V, E ,A)
⇒ V = {1, . . . ,N}, E ⊆ V × V, A ∈ RN×N

▶ Define a signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

▶ Associated with G → graph-shift operator (GSO) S ∈ RN×N

⇒ Sij ̸= 0 if and only if i = j or (i , j) ∈ E (local structure in G)

▶ Graph Signal Processing → Exploit structure encoded in S to process x

▶ First linear processing: graph filters, graph Fourier transform...

▶ Then neural nets: GCNNs, GRNNs, G-Tensor, G-Autoencoders

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 4 / 19

Preliminaries of Graph Signal Processing

▶ A graph G: N nodes and links connecting them

⇒ G ≡ (V, E ,A)
⇒ V = {1, . . . ,N}, E ⊆ V × V, A ∈ RN×N

▶ Define a signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

▶ Associated with G → graph-shift operator (GSO) S ∈ RN×N

⇒ Sij ̸= 0 if and only if i = j or (i , j) ∈ E (local structure in G)

▶ Graph Signal Processing → Exploit structure encoded in S to process x

▶ First linear processing: graph filters, graph Fourier transform...

▶ Then neural nets: GCNNs, GRNNs, G-Tensor, G-Autoencoders

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 4 / 19

Motivation, context and goal

▶ Existing NN works dealing with graph signals [Bruna17]

⇒ Input graph signal G, output scalar (class)
⇒ Input graph signal G, output graph signal G (embeddings)

▶ Here, consider two signals, each defined on a different graph:
▶ GX with N nodes (signal x ∈ RN), and graph-shift operator SX

▶ GY with M nodes (signal y ∈ RM), and graph-shift operator SY

▶ Goal: Learn the nonlinear mapping fΘ : RN → RM

y = fΘ(x |GX ,GY)

exploiting GX and GY and using a Neural Network (NN) architecture

▶ Key: Consider latent space Z to transform between graphs

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 5 / 19

Motivation, context and goal

▶ Existing NN works dealing with graph signals [Bruna17]

⇒ Input graph signal G, output scalar (class)
⇒ Input graph signal G, output graph signal G (embeddings)

▶ Here, consider two signals, each defined on a different graph:
▶ GX with N nodes (signal x ∈ RN), and graph-shift operator SX

▶ GY with M nodes (signal y ∈ RM), and graph-shift operator SY

▶ Goal: Learn the nonlinear mapping fΘ : RN → RM

y = fΘ(x |GX ,GY)

exploiting GX and GY and using a Neural Network (NN) architecture

▶ Key: Consider latent space Z to transform between graphs

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 5 / 19

Motivation, context and goal

▶ Existing NN works dealing with graph signals [Bruna17]

⇒ Input graph signal G, output scalar (class)
⇒ Input graph signal G, output graph signal G (embeddings)

▶ Here, consider two signals, each defined on a different graph:
▶ GX with N nodes (signal x ∈ RN), and graph-shift operator SX

▶ GY with M nodes (signal y ∈ RM), and graph-shift operator SY

▶ Goal: Learn the nonlinear mapping fΘ : RN → RM

y = fΘ(x |GX ,GY)

exploiting GX and GY and using a Neural Network (NN) architecture

▶ Key: Consider latent space Z to transform between graphs

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 5 / 19

Motivation, context and goal

▶ Existing NN works dealing with graph signals [Bruna17]

⇒ Input graph signal G, output scalar (class)
⇒ Input graph signal G, output graph signal G (embeddings)

▶ Here, consider two signals, each defined on a different graph:
▶ GX with N nodes (signal x ∈ RN), and graph-shift operator SX

▶ GY with M nodes (signal y ∈ RM), and graph-shift operator SY

▶ Goal: Learn the nonlinear mapping fΘ : RN → RM

y = fΘ(x |GX ,GY)

exploiting GX and GY and using a Neural Network (NN) architecture

▶ Key: Consider latent space Z to transform between graphs

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 5 / 19

Common underlying space I

▶ The underlying space Z implies that

x on GX =⇒︸︷︷︸
ψX

ΘX

ZX ∈ RN×FZX , ZX =⇒︸︷︷︸
ψZ

ΘZ

ZY ∈ RM×FZY , ZY =⇒︸︷︷︸
ψY

ΘY

y on GY

▶ More precisely

⇒ ψX
ΘX

standard GNN operating over GX

⇒ ψY
ΘY

standard GNN operating over GY

⇒ ψZ
ΘZ

transformation between domains: design covered later

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 6 / 19

Common underlying space I

▶ The underlying space Z implies that

x on GX =⇒︸︷︷︸
ψX

ΘX

ZX ∈ RN×FZX , ZX =⇒︸︷︷︸
ψZ

ΘZ

ZY ∈ RM×FZY , ZY =⇒︸︷︷︸
ψY

ΘY

y on GY

▶ More precisely

⇒ ψX
ΘX

standard GNN operating over GX

⇒ ψY
ΘY

standard GNN operating over GY

⇒ ψZ
ΘZ

transformation between domains: design covered later

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 6 / 19

Common underlying space II

▶ The input-output mapping is then

fΘ(X|GX ,GY) = ψY
ΘY

◦ψZ
ΘZ

◦ψX
ΘX

; Ŷ = ψY
ΘY

(ψZ
ΘZ

(ψX
ΘX

(X|GX))|GY)

▶ Parameters ΘX , ΘY and (possibly) ΘZ

⇒ Learned through backpropagation

⇒ Assumption: ψZ
ΘZ

is differentiable

▶ Key in this approach: design of ψZ
ΘZ

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 7 / 19

Common underlying space II

▶ The input-output mapping is then

fΘ(X|GX ,GY) = ψY
ΘY

◦ψZ
ΘZ

◦ψX
ΘX

; Ŷ = ψY
ΘY

(ψZ
ΘZ

(ψX
ΘX

(X|GX))|GY)

▶ Parameters ΘX , ΘY and (possibly) ΘZ

⇒ Learned through backpropagation

⇒ Assumption: ψZ
ΘZ

is differentiable

▶ Key in this approach: design of ψZ
ΘZ

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 7 / 19

Common underlying space II

▶ The input-output mapping is then

fΘ(X|GX ,GY) = ψY
ΘY

◦ψZ
ΘZ

◦ψX
ΘX

; Ŷ = ψY
ΘY

(ψZ
ΘZ

(ψX
ΘX

(X|GX))|GY)

▶ Parameters ΘX , ΘY and (possibly) ΘZ

⇒ Learned through backpropagation

⇒ Assumption: ψZ
ΘZ

is differentiable

▶ Key in this approach: design of ψZ
ΘZ

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 7 / 19

Design of ψZ
ΘZ

▶ Several design decisions → taxonomy

▶ Domain specific vs agnostic to the task

⇒ Incorporate info about the task

N M

� Zx i/Jz Zy
/\

_I
--

,
9x

-- -

Fzx Qy Fzy

▶ Learnable vs fixed in advance

⇒ Propose a parametric function with parameters ΘZ

⇒ ΘZ learned through gradient descent and backpropagation

▶ Linear vs more complex transformations

⇒ Most general case of linear transformation

vec(ZY) = Wvec(ZX),

⇒ With (possibly learnable) transformation W ∈ RMFZY
×NFZX

⇒ Huge number of parameters if graphs are large → overfitting

⇒ Can incorporate structure to the transformation

⇒ More complex can include e.g. MLP

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 8 / 19

Design of ψZ
ΘZ

▶ Several design decisions → taxonomy

▶ Domain specific vs agnostic to the task

⇒ Incorporate info about the task

N M

� Zx i/Jz Zy
/\

_I
--

,
9x

-- -

Fzx Qy Fzy

▶ Learnable vs fixed in advance

⇒ Propose a parametric function with parameters ΘZ

⇒ ΘZ learned through gradient descent and backpropagation

▶ Linear vs more complex transformations

⇒ Most general case of linear transformation

vec(ZY) = Wvec(ZX),

⇒ With (possibly learnable) transformation W ∈ RMFZY
×NFZX

⇒ Huge number of parameters if graphs are large → overfitting

⇒ Can incorporate structure to the transformation

⇒ More complex can include e.g. MLP

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 8 / 19

Design of ψZ
ΘZ

▶ Several design decisions → taxonomy

▶ Domain specific vs agnostic to the task

⇒ Incorporate info about the task

N M

� Zx i/Jz Zy
/\

_I
--

,
9x

-- -

Fzx Qy Fzy

▶ Learnable vs fixed in advance

⇒ Propose a parametric function with parameters ΘZ

⇒ ΘZ learned through gradient descent and backpropagation

▶ Linear vs more complex transformations

⇒ Most general case of linear transformation

vec(ZY) = Wvec(ZX),

⇒ With (possibly learnable) transformation W ∈ RMFZY
×NFZX

⇒ Huge number of parameters if graphs are large → overfitting

⇒ Can incorporate structure to the transformation

⇒ More complex can include e.g. MLP

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 8 / 19

Design of ψZ
ΘZ

▶ Several design decisions → taxonomy

▶ Domain specific vs agnostic to the task

⇒ Incorporate info about the task

N M

� Zx i/Jz Zy
/\

_I
--

,
9x

-- -

Fzx Qy Fzy

▶ Learnable vs fixed in advance

⇒ Propose a parametric function with parameters ΘZ

⇒ ΘZ learned through gradient descent and backpropagation

▶ Linear vs more complex transformations

⇒ Most general case of linear transformation

vec(ZY) = Wvec(ZX),

⇒ With (possibly learnable) transformation W ∈ RMFZY
×NFZX

⇒ Huge number of parameters if graphs are large → overfitting

⇒ Can incorporate structure to the transformation

⇒ More complex can include e.g. MLP

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 8 / 19

Linear structure in ψZ
ΘZ

▶ Low Rank W = WYWT
X

⇒ WY ∈ RMFZY
×K and WX ∈ RNFZX

×K

⇒ Reduce params. from MFZY
NFZX

to (MFZY
+ NFZX

)K

▶ Kronecker Structure W = WT
F ⊗WN ⇒ ZY = WNZXWF

⇒ Using property vec(ABC) = (CT ⊗ A)vec(B)

⇒ WN ∈ RM×N combines information across nodes

⇒ WF ∈ RFZX
×FZY combines information across features

⇒ Both WN and WF can be fixed or learned

⇒ If both are learned, alternating fashion

▶ Permutation matrix

⇒ Cells in ZX are rearranged to form ZY

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 9 / 19

Linear structure in ψZ
ΘZ

▶ Low Rank W = WYWT
X

⇒ WY ∈ RMFZY
×K and WX ∈ RNFZX

×K

⇒ Reduce params. from MFZY
NFZX

to (MFZY
+ NFZX

)K

▶ Kronecker Structure W = WT
F ⊗WN ⇒ ZY = WNZXWF

⇒ Using property vec(ABC) = (CT ⊗ A)vec(B)

⇒ WN ∈ RM×N combines information across nodes

⇒ WF ∈ RFZX
×FZY combines information across features

⇒ Both WN and WF can be fixed or learned

⇒ If both are learned, alternating fashion

▶ Permutation matrix

⇒ Cells in ZX are rearranged to form ZY

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 9 / 19

Linear structure in ψZ
ΘZ

▶ Low Rank W = WYWT
X

⇒ WY ∈ RMFZY
×K and WX ∈ RNFZX

×K

⇒ Reduce params. from MFZY
NFZX

to (MFZY
+ NFZX

)K

▶ Kronecker Structure W = WT
F ⊗WN ⇒ ZY = WNZXWF

⇒ Using property vec(ABC) = (CT ⊗ A)vec(B)

⇒ WN ∈ RM×N combines information across nodes

⇒ WF ∈ RFZX
×FZY combines information across features

⇒ Both WN and WF can be fixed or learned

⇒ If both are learned, alternating fashion

▶ Permutation matrix

⇒ Cells in ZX are rearranged to form ZY

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 9 / 19

Linear structure in ψZ
ΘZ

▶ Low Rank W = WYWT
X

⇒ WY ∈ RMFZY
×K and WX ∈ RNFZX

×K

⇒ Reduce params. from MFZY
NFZX

to (MFZY
+ NFZX

)K

▶ Kronecker Structure W = WT
F ⊗WN ⇒ ZY = WNZXWF

⇒ Using property vec(ABC) = (CT ⊗ A)vec(B)

⇒ WN ∈ RM×N combines information across nodes

⇒ WF ∈ RFZX
×FZY combines information across features

⇒ Both WN and WF can be fixed or learned

⇒ If both are learned, alternating fashion

▶ Permutation matrix

⇒ Cells in ZX are rearranged to form ZY

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 9 / 19

Examples of domain agnostic ψZ
ΘZ

▶ Provide two examples that are

⇒ Easy to implement

⇒ Agnostic to the underlying task → applicable in any situation

▶ ZY = ZT
X

⇒ Set FZX
= M in ψX

ΘX
, and FZY

= N in ψY
ΘY

⇒ Example of W as a permutation matrix

⇒ Non-learnable

⇒ Equivalence features in node and graph signal

▶ ZY = WNZX

⇒ Simple Kronecker structure with WF = I

⇒ FZX
= FZY

⇒ WN learned through backpropagation

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 10 / 19

Examples of domain agnostic ψZ
ΘZ

▶ Provide two examples that are

⇒ Easy to implement

⇒ Agnostic to the underlying task → applicable in any situation

▶ ZY = ZT
X

⇒ Set FZX
= M in ψX

ΘX
, and FZY

= N in ψY
ΘY

⇒ Example of W as a permutation matrix

⇒ Non-learnable

⇒ Equivalence features in node and graph signal

▶ ZY = WNZX

⇒ Simple Kronecker structure with WF = I

⇒ FZX
= FZY

⇒ WN learned through backpropagation

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 10 / 19

Examples of domain agnostic ψZ
ΘZ

▶ Provide two examples that are

⇒ Easy to implement

⇒ Agnostic to the underlying task → applicable in any situation

▶ ZY = ZT
X

⇒ Set FZX
= M in ψX

ΘX
, and FZY

= N in ψY
ΘY

⇒ Example of W as a permutation matrix

⇒ Non-learnable

⇒ Equivalence features in node and graph signal

▶ ZY = WNZX

⇒ Simple Kronecker structure with WF = I

⇒ FZX
= FZY

⇒ WN learned through backpropagation

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 10 / 19

Permutation equivariance of IOGNN

▶ Standard GNNs are permutation equivariant

ψ(PX,PSPT) = Pψ(X,S)

⇒ For any permutation matrix P ∈ RN×N

▶ Can we say the same about IOGNN?

⇒ Input and output are not defined on the same space

⇒ Cannot apply same permutation to input and output

▶ We can instead say

fΘ(PXX|PXSXP
T
X ,PYSYP

T
Y) = PY fΘ(X|SX ,SY)

⇒ Under the assumption that ψZ
ΘZ

fulfills

ψZ
ΘZ

(PXZ) = PYψ
Z
ΘZ

(Z)

▶ As an example, consider the transformation ZY = WNZX

⇒ Rearrange weight matrix as W′
N = PYWNPT

X

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 11 / 19

Permutation equivariance of IOGNN

▶ Standard GNNs are permutation equivariant

ψ(PX,PSPT) = Pψ(X,S)

⇒ For any permutation matrix P ∈ RN×N

▶ Can we say the same about IOGNN?

⇒ Input and output are not defined on the same space

⇒ Cannot apply same permutation to input and output

▶ We can instead say

fΘ(PXX|PXSXP
T
X ,PYSYP

T
Y) = PY fΘ(X|SX ,SY)

⇒ Under the assumption that ψZ
ΘZ

fulfills

ψZ
ΘZ

(PXZ) = PYψ
Z
ΘZ

(Z)

▶ As an example, consider the transformation ZY = WNZX

⇒ Rearrange weight matrix as W′
N = PYWNPT

X

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 11 / 19

Permutation equivariance of IOGNN

▶ Standard GNNs are permutation equivariant

ψ(PX,PSPT) = Pψ(X,S)

⇒ For any permutation matrix P ∈ RN×N

▶ Can we say the same about IOGNN?

⇒ Input and output are not defined on the same space

⇒ Cannot apply same permutation to input and output

▶ We can instead say

fΘ(PXX|PXSXP
T
X ,PYSYP

T
Y) = PY fΘ(X|SX ,SY)

⇒ Under the assumption that ψZ
ΘZ

fulfills

ψZ
ΘZ

(PXZ) = PYψ
Z
ΘZ

(Z)

▶ As an example, consider the transformation ZY = WNZX

⇒ Rearrange weight matrix as W′
N = PYWNPT

X

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 11 / 19

Numerical Results - Subgraph Feature Estimation

▶ From a graph G we sample two subgraphs GX and GY

⇒ G is the Cora graph

⇒ Mapping from node features in GX to labels in GY

2 3 4 5 6 7 8
Number of neighbors

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
ov

er
th

e
te

st
no

de
se

t

IOGCN-W
IOMLP-W
IOGCN-T
IOGCN-C
IOMLP-C
GCN
GCN-Limited-GX

GCN-Limited-GY

GCN-Limited-GXY

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 12 / 19

Numerical Results - Image Interpolation

▶ Framework suited for the interpolation task

⇒ GX is a coarse/subgraph of GY

⇒ Interpolation from signal in coarse GX to fine GY

▶ Image interpolation

⇒ Superpixels + Region Adjacency Graph

(a) RAG X (b) Mean X (c) RAG Y (d) Target/Mean Y

(e) IOGCN (f) CNN (g) KNN (h) IOMLP

100 101 102 103

Ny/Nx

10−3

10−2

M
SE

on
th

e
re

al
im

ag
e

IOGCN-W
IOGCN-S
IOMLP-W
IOMLP-S
KNN
Mean X
Mean Y

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 13 / 19

Numerical Results - Image Interpolation

▶ Framework suited for the interpolation task

⇒ GX is a coarse/subgraph of GY

⇒ Interpolation from signal in coarse GX to fine GY

▶ Image interpolation

⇒ Superpixels + Region Adjacency Graph

(a) RAG X (b) Mean X (c) RAG Y (d) Target/Mean Y

(e) IOGCN (f) CNN (g) KNN (h) IOMLP

100 101 102 103

Ny/Nx

10−3

10−2

M
SE

on
th

e
re

al
im

ag
e

IOGCN-W
IOGCN-S
IOMLP-W
IOMLP-S
KNN
Mean X
Mean Y

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 13 / 19

Numerical Results - Image Interpolation

▶ Framework suited for the interpolation task

⇒ GX is a coarse/subgraph of GY

⇒ Interpolation from signal in coarse GX to fine GY

▶ Image interpolation

⇒ Superpixels + Region Adjacency Graph

(a) RAG X (b) Mean X (c) RAG Y (d) Target/Mean Y

(e) IOGCN (f) CNN (g) KNN (h) IOMLP

100 101 102 103

Ny/Nx

10−3

10−2

M
SE

on
th

e
re

al
im

ag
e

IOGCN-W
IOGCN-S
IOMLP-W
IOMLP-S
KNN
Mean X
Mean Y

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 13 / 19

Numerical Results - Fluid Flow Prediction

▶ Interpolation in the field of CFD

⇒ Solved via Navier-Stokes PDE on meshes

⇒ Fine meshes are computationally costly

▶ Fully supervised setting

Interpolation Generalization
CFD-GCN∗ 1,8e-02 5,4e-02

GCN∗ 1,4e-02 9,5e-02
IOGCN-W 6,7e-03 4,1e-02
IOGCN-S 1,7e-02 3,7e-02
IOGAT-W 8,7e-03 6,6e-02
IOGAT-S 8,3e-03 6,2e-02
IOMLP-W 8,4e-03 4,0e-02

GAT 1,1e-02 1,1e-01

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 14 / 19

Connections with CCA and SSL - Previous work

▶ Canonical Correlation Analysis (CCA)

⇒ Given two views of data X ∈ RN×FX and Y ∈ RN×FY

⇒ Compute transformations U ∈ RFX×FZ and V ∈ RFY×FZ

⇒ Seek maximal correlation in transformed space

max
U,V

tr(UTΣXYV)

s. to: UTΣXXU = VTΣYYV = I,

▶ Deep setting: Deep CCA

max
ΘX ,ΘY

tr
(
fΘX

(X)TfΘY
(Y)

)
s. to: fΘX

(X)TfΘX
(X) = fΘY

(Y)TfΘY
(Y) = I

⇒ Slight different reformulation (CCA-SSG)

min
ΘX ,ΘY

∥fΘX
(X)− fΘY

(Y)∥2F + λ (LSDL(fΘX
(X)) + LSDL(fΘY

(Y)))

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 15 / 19

Connections with CCA and SSL - Previous work

▶ Canonical Correlation Analysis (CCA)

⇒ Given two views of data X ∈ RN×FX and Y ∈ RN×FY

⇒ Compute transformations U ∈ RFX×FZ and V ∈ RFY×FZ

⇒ Seek maximal correlation in transformed space

max
U,V

tr(UTΣXYV)

s. to: UTΣXXU = VTΣYYV = I,

▶ Deep setting: Deep CCA

max
ΘX ,ΘY

tr
(
fΘX

(X)TfΘY
(Y)

)
s. to: fΘX

(X)TfΘX
(X) = fΘY

(Y)TfΘY
(Y) = I

⇒ Slight different reformulation (CCA-SSG)

min
ΘX ,ΘY

∥fΘX
(X)− fΘY

(Y)∥2F + λ (LSDL(fΘX
(X)) + LSDL(fΘY

(Y)))

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 15 / 19

Connections with CCA and SSL - Previous work

▶ Canonical Correlation Analysis (CCA)

⇒ Given two views of data X ∈ RN×FX and Y ∈ RN×FY

⇒ Compute transformations U ∈ RFX×FZ and V ∈ RFY×FZ

⇒ Seek maximal correlation in transformed space

max
U,V

tr(UTΣXYV)

s. to: UTΣXXU = VTΣYYV = I,

▶ Deep setting: Deep CCA

max
ΘX ,ΘY

tr
(
fΘX

(X)TfΘY
(Y)

)
s. to: fΘX

(X)TfΘX
(X) = fΘY

(Y)TfΘY
(Y) = I

⇒ Slight different reformulation (CCA-SSG)

min
ΘX ,ΘY

∥fΘX
(X)− fΘY

(Y)∥2F + λ (LSDL(fΘX
(X)) + LSDL(fΘY

(Y)))

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 15 / 19

Connections with CCA and SSL

▶ We can apply our architecture to the CCA setting

⇒ Now we know both X and Y

⇒ Goal: find alternative representations ZX and ZY

▶ Aim to solve

max
ΘX ,ΘZ ,ΘY

tr(ψZ
ΘZ

(ψX
ΘX

(X|GX))
TψY −1

ΘY
(Y|GY))

s. to: ψZ
ΘZ

(ψX
ΘX

(X|GX))
TψZ

ΘZ
(ψX

ΘX
(X|GX)) =

ψY −1
ΘY

(Y|GY)
TψY −1

ΘY
(Y|GY) = I

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 16 / 19

Connections with CCA and SSL

▶ We can apply our architecture to the CCA setting

⇒ Now we know both X and Y

⇒ Goal: find alternative representations ZX and ZY

▶ Aim to solve

max
ΘX ,ΘZ ,ΘY

tr(ψZ
ΘZ

(ψX
ΘX

(X|GX))
TψY −1

ΘY
(Y|GY))

s. to: ψZ
ΘZ

(ψX
ΘX

(X|GX))
TψZ

ΘZ
(ψX

ΘX
(X|GX)) =

ψY −1
ΘY

(Y|GY)
TψY −1

ΘY
(Y|GY) = I

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 16 / 19

Numerical Results - Self-Supervised Learning

▶ Problem setting
⇒ G is a common graph with two views
⇒ GX edges dropped, features masked
⇒ GY subgraph with perfect information

▶ Perform node classification via transformed views
⇒ SSL setting

0.5 0.6 0.7 0.8 0.9 1.0
Fraction of edges dropped / features masked

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y
ov

er
th

e
te

st
no

de
se

t

Cora-IOGCN
Cora-IOMLP
Cora-CCA-SSG
Citeseer-IOGCN
Citeseer-IOMLP
Citeseer-CCA-SSG

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 17 / 19

Closing remarks

▶ Novel NN architecture to learn mapping from (x,GX) to (y,GY)

▶ Key idea: latent common space and two graph-aware NN

⇒ Step 1) graph-aware NN from (x,GX) to latent space ZX

⇒ Step 2) transformation between ZX in GX to ZY in GY

⇒ Step 3) graph-aware NN from latent space ZY to (y,GY)

⇒ Parameters jointly learned (backpropag using input-output pairs)

▶ Taxonomy of functions for transformation ψZ

⇒ Several design decisions

⇒ Flexible design to accommodate different scenarios

▶ Analogies with CCA and SSL

⇒ Able to learn alternative informative representations

⇒ Used for downstream tasks

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 18 / 19

Closing remarks

▶ Novel NN architecture to learn mapping from (x,GX) to (y,GY)

▶ Key idea: latent common space and two graph-aware NN

⇒ Step 1) graph-aware NN from (x,GX) to latent space ZX

⇒ Step 2) transformation between ZX in GX to ZY in GY

⇒ Step 3) graph-aware NN from latent space ZY to (y,GY)

⇒ Parameters jointly learned (backpropag using input-output pairs)

▶ Taxonomy of functions for transformation ψZ

⇒ Several design decisions

⇒ Flexible design to accommodate different scenarios

▶ Analogies with CCA and SSL

⇒ Able to learn alternative informative representations

⇒ Used for downstream tasks

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 18 / 19

Closing remarks

▶ Novel NN architecture to learn mapping from (x,GX) to (y,GY)

▶ Key idea: latent common space and two graph-aware NN

⇒ Step 1) graph-aware NN from (x,GX) to latent space ZX

⇒ Step 2) transformation between ZX in GX to ZY in GY

⇒ Step 3) graph-aware NN from latent space ZY to (y,GY)

⇒ Parameters jointly learned (backpropag using input-output pairs)

▶ Taxonomy of functions for transformation ψZ

⇒ Several design decisions

⇒ Flexible design to accommodate different scenarios

▶ Analogies with CCA and SSL

⇒ Able to learn alternative informative representations

⇒ Used for downstream tasks

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 18 / 19

Thank you

Questions at: victor.tenorio@urjc.es

Victor M. Tenorio Exploiting the Structure of Two Graphs via Graph Neural Networks 19 / 19

	Introduction
	Problem formulation
	Numerical Results

	Connections with CCA and SSL
	Numerical Results

	Conclusions

