

Exploiting the Structure of Two Graphs via Graph Neural Networks

Victor M. Tenorio

King Juan Carlos University - Madrid (Spain) In collaboration with Antonio G. Marques

> Universidad Rey Juan Carlos

July 10, 2024

御 ▶ イ君 ▶ イ君 ▶

Index

[Introduction](#page-2-0)

[Problem formulation](#page-5-0) [Numerical Results](#page-28-0)

[Connections with CCA and SSL](#page-33-0)

[Numerical Results](#page-38-0)

[Conclusions](#page-39-0)

目

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

Introducción

- ▶ Each day huge amounts of data are generated
	- ⇒ Irregular structure
- ▶ Need to find new ways to
	- \Rightarrow Represent the data
	- ⇒ Learn from it

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

- \blacktriangleright Representation of irregular data
	- \Rightarrow Via more complex structures \rightarrow graphs
- ▶ Learning over irregular data
	- \Rightarrow New machine learning algorithms
- ▶ Join both in graph neural networks (GNNs)

 \triangleright This work: input and output are defined over different graphs

Victor M. Tenorio **Exploiting the Structure of Two Graphs via Graph Neural Networks Exploiting the Structure of Two Graphs via Graph Neural Networks 6 14 / 19**

つくへ

Preliminaries of Graph Signal Processing

 \blacktriangleright A graph \mathcal{G} : N nodes and links connecting them \Rightarrow $\mathcal{G} \equiv (\mathcal{V}, \mathcal{E}, \mathbf{A})$ $\Rightarrow \mathcal{V} = \{1, \ldots, N\}, \, \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}, \, \mathbf{A} \in \mathbb{R}^{N \times N}$

▶ Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph

 \Rightarrow x_i = Signal value at node *i*

ヨメ メヨメ

Preliminaries of Graph Signal Processing

- \triangleright A graph \mathcal{G} : N nodes and links connecting them \Rightarrow $\mathcal{G} \equiv (\mathcal{V}, \mathcal{E}, \mathbf{A})$
	- $\Rightarrow \mathcal{V} = \{1, \ldots, N\}, \, \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}, \, \mathbf{A} \in \mathbb{R}^{N \times N}$
- ▶ Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph \Rightarrow x_i = Signal value at node *i*
- ▶ Associated with $\mathcal{G} \to \text{graph-shift operator (GSO)}$ $\mathbf{S} \in \mathbb{R}^{N \times N}$ $\Rightarrow S_{ii} \neq 0$ if and only if $i = j$ or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G})
- **► Graph Signal Processing** \rightarrow Exploit structure encoded in S to process x
- First linear processing: graph filters, graph Fourier transform...
- ▶ Then neural nets: GCNNs, GRNNs, G-Tensor, G-Autoencoders

A BAK BA

 \triangleright Existing NN works dealing with graph signals [Bruna17]

- \Rightarrow Input graph signal G, output scalar (class)
- \Rightarrow Input graph signal G, output graph signal G (embeddings)

医单位性骨折

▶ Existing NN works dealing with graph signals [Bruna17]

- \Rightarrow Input graph signal G, output scalar (class)
- \Rightarrow Input graph signal G, output graph signal G (embeddings)
- \blacktriangleright Here, consider two signals, each defined on a different graph:
	- ▶ G_X with N nodes (signal $x \in \mathbb{R}^N$), and graph-shift operator S_X
	- ▶ \mathcal{G}_Y with M nodes (signal $\mathbf{y} \in \mathbb{R}^M$), and graph-shift operator \mathbf{S}_Y

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

▶ Existing NN works dealing with graph signals [Bruna17]

- \Rightarrow Input graph signal G, output scalar (class)
- \Rightarrow Input graph signal G, output graph signal G (embeddings)
- ▶ Here, consider two signals, each defined on a different graph:
	- ▶ G_X with N nodes (signal $x \in \mathbb{R}^N$), and graph-shift operator S_X ▶ \mathcal{G}_Y with M nodes (signal $\mathbf{y} \in \mathbb{R}^M$), and graph-shift operator \mathbf{S}_Y
- \blacktriangleright Goal: Learn the nonlinear mapping $f_{\Theta}:\mathbb{R}^N\to\mathbb{R}^M$

$$
\bm{y} = f_{\bm{\Theta}}(\bm{x} \, | \mathcal{G}_X, \mathcal{G}_Y)
$$

exploiting \mathcal{G}_X and \mathcal{G}_Y and using a Neural Network (NN) architecture

同下 4 ミト 4 ミト

▶ Existing NN works dealing with graph signals [Bruna17]

- \Rightarrow Input graph signal G, output scalar (class)
- \Rightarrow Input graph signal G, output graph signal G (embeddings)
- ▶ Here, consider two signals, each defined on a different graph:
	- ▶ G_X with N nodes (signal $x \in \mathbb{R}^N$), and graph-shift operator S_X ▶ \mathcal{G}_Y with M nodes (signal $\mathbf{y} \in \mathbb{R}^M$), and graph-shift operator \mathbf{S}_Y
- \blacktriangleright Goal: Learn the nonlinear mapping $f_{\Theta}:\mathbb{R}^N\to\mathbb{R}^M$

$$
\bm{y} = f_{\bm{\Theta}}(\bm{x} \, | \mathcal{G}_X, \mathcal{G}_Y)
$$

exploiting \mathcal{G}_X and \mathcal{G}_Y and using a Neural Network (NN) architecture

▶ Key: Consider latent space Z to transform between graphs

(御) (言) (言)

Common underlying space I

(ロ) (個) (星) (星) (

Common underlying space I

▶ More precisely

 $\Rightarrow \psi ^{X}_{{\bf \Theta }_{X}}$ standard GNN operating over \mathcal{G}_{X} $\Rightarrow \psi^{\mathsf{Y}}_{\mathsf{\Theta}_{\mathsf{Y}}}$ standard GNN operating over ${\mathcal{G}}_{\mathsf{Y}}$ $\Rightarrow \psi^Z_{\mathsf{\Theta}_\mathcal{Z}}$ transformation between domains: design covered later K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Common underlying space II

 \blacktriangleright The input-output mapping is then

 $f_{\Theta}(\mathbf{X} | \mathcal{G}_X, \mathcal{G}_Y) = \psi_{\Theta_Y}^Y \circ \psi_{\Theta_Z}^Z \circ \psi_{\Theta_X}^X \; ; \; \; \hat{\mathbf{Y}} = \psi_{\Theta_Y}^Y(\psi_{\Theta_Z}^Z(\psi_{\Theta_X}^X(\mathbf{X} | \mathcal{G}_X)) | \mathcal{G}_Y)$

 \leftarrow

K 등 K K 등 K

Common underlying space II

 \blacktriangleright The input-output mapping is then

 $f_{\Theta}(\mathbf{X} | \mathcal{G}_X, \mathcal{G}_Y) = \psi_{\Theta_Y}^Y \circ \psi_{\Theta_Z}^Z \circ \psi_{\Theta_X}^X \; ; \; \; \hat{\mathbf{Y}} = \psi_{\Theta_Y}^Y(\psi_{\Theta_Z}^Z(\psi_{\Theta_X}^X(\mathbf{X} | \mathcal{G}_X)) | \mathcal{G}_Y)$

Example 1 Parameters Θ_X , Θ_Y and (possibly) Θ_Z \Rightarrow Learned through backpropagation \Rightarrow Assumption: $\psi^Z_{\mathbf{\Theta}_Z}$ is differentiable

ヨメ メヨメ

Common underlying space II

 \blacktriangleright The input-output mapping is then

 $f_{\Theta}(\mathbf{X} | \mathcal{G}_X, \mathcal{G}_Y) = \psi_{\Theta_Y}^Y \circ \psi_{\Theta_Z}^Z \circ \psi_{\Theta_X}^X \; ; \; \; \hat{\mathbf{Y}} = \psi_{\Theta_Y}^Y(\psi_{\Theta_Z}^Z(\psi_{\Theta_X}^X(\mathbf{X} | \mathcal{G}_X)) | \mathcal{G}_Y)$

Example 1 Parameters Θ_X , Θ_Y and (possibly) Θ_Z \Rightarrow Learned through backpropagation \Rightarrow Assumption: $\psi^Z_{\mathbf{\Theta}_Z}$ is differentiable \blacktriangleright Key in this approach: design of $\psi^Z_{\Theta_Z}$

ヨメ メヨメ

▶ Several design decisions $→$ taxonomy

≣

→ 君をす者を

4 0 8 \leftarrow \overline{m} \rightarrow

- ▶ Several design decisions $→$ taxonomy
- ▶ Domain specific vs agnostic to the task

4 0 8

ミドマミド

- ▶ Several design decisions $→$ taxonomy
- ▶ Domain specific vs agnostic to the task
	- ▶ Learnable vs fixed in advance

- \Rightarrow Propose a parametric function with parameters Θ_Z
- \Rightarrow Θ _z learned through gradient descent and backpropagation

B X X B

- ▶ Several design decisions $→$ taxonomy
- Domain specific vs agnostic to the task
	- ▶ Learnable vs fixed in advance

- \Rightarrow Propose a parametric function with parameters Θ
- \Rightarrow Θ _z learned through gradient descent and backpropagation

▶ Linear vs more complex transformations

 \Rightarrow Most general case of linear transformation

$$
\text{vec}(\mathbf{Z}_Y) = \mathbf{W}\text{vec}(\mathbf{Z}_X),
$$

- \Rightarrow With (possibly learnable) transformation $\mathbf{W} \in \mathbb{R}^{MF_{Z_\mathcal{Y}} \times NF_{Z_\mathcal{X}}}$
- \Rightarrow Huge number of parameters if graphs are large \rightarrow overfitting
- \Rightarrow Can incorporate structure to the transformation
- \Rightarrow More complex can include e.g. MLP

 \blacktriangleright Low Rank $\mathbf{W} = \mathbf{W}_Y \mathbf{W}_X^\top$ \Rightarrow $\mathsf{W}_\mathsf{Y} \in \mathbb{R}^{MF_{Z_\mathsf{Y}} \times K}$ and $\mathsf{W}_\mathsf{X} \in \mathbb{R}^{NF_{Z_\mathsf{X}} \times K}$ \Rightarrow Reduce params. from $\mathit{MF}_{Z_Y}\mathit{NF}_{Z_X}$ to $(\mathit{MF}_{Z_Y} + \mathit{NF}_{Z_X})\mathit{KN}$

御き メミメ メミメー

 \blacktriangleright Low Rank $\mathbf{W} = \mathbf{W}_Y \mathbf{W}_X^\top$ \Rightarrow $\mathsf{W}_\mathsf{Y} \in \mathbb{R}^{MF_{Z_\mathsf{Y}} \times K}$ and $\mathsf{W}_\mathsf{X} \in \mathbb{R}^{NF_{Z_\mathsf{X}} \times K}$ \Rightarrow Reduce params. from $\mathit{MF}_{Z_Y}\mathit{NF}_{Z_X}$ to $(\mathit{MF}_{Z_Y} + \mathit{NF}_{Z_X})\mathit{KN}$

▶ Kronecker Structure $\mathbf{W} = \mathbf{W}_F^T \otimes \mathbf{W}_N \Rightarrow \mathbf{Z}_Y = \mathbf{W}_N \mathbf{Z}_X \mathbf{W}_F$ \Rightarrow Using property vec $(\mathbf{ABC}) = (\mathbf{C}^T \otimes \mathbf{A})$ vec (\mathbf{B})

 $\mathbf{A} \equiv \mathbf{A} \quad \mathbf{A} \equiv \mathbf{A} \quad \mathbf{A}$

 \blacktriangleright Low Rank $\mathbf{W} = \mathbf{W}_Y \mathbf{W}_X^\top$ \Rightarrow $\mathsf{W}_\mathsf{Y} \in \mathbb{R}^{MF_{Z_\mathsf{Y}} \times K}$ and $\mathsf{W}_\mathsf{X} \in \mathbb{R}^{NF_{Z_\mathsf{X}} \times K}$ \Rightarrow Reduce params. from $\mathit{MF}_{Z_Y}\mathit{NF}_{Z_X}$ to $(\mathit{MF}_{Z_Y} + \mathit{NF}_{Z_X})\mathit{KN}$ ▶ Kronecker Structure $\mathbf{W} = \mathbf{W}_F^T \otimes \mathbf{W}_N \Rightarrow \mathbf{Z}_Y = \mathbf{W}_N \mathbf{Z}_X \mathbf{W}_F$ \Rightarrow Using property vec $(\mathbf{ABC}) = (\mathbf{C}^T \otimes \mathbf{A})$ vec (\mathbf{B}) \Rightarrow $\mathsf{W}_{N} \in \mathbb{R}^{M \times N}$ combines information across nodes \Rightarrow $\bm{\mathsf{W}}_{\bm{\mathsf{F}}} \in \mathbb{R}^{\mathsf{F}_{Z_\mathsf{X}} \times \mathsf{F}_{Z_\mathsf{Y}}}$ combines information across features \Rightarrow Both W_N and W_F can be fixed or learned \Rightarrow If both are learned, alternating fashion

 \rightarrow 4 \equiv 8 4 \equiv 8 \rightarrow

 \blacktriangleright Low Rank $\mathbf{W} = \mathbf{W}_Y \mathbf{W}_X^\top$ \Rightarrow $\mathsf{W}_\mathsf{Y} \in \mathbb{R}^{MF_{Z_\mathsf{Y}} \times K}$ and $\mathsf{W}_\mathsf{X} \in \mathbb{R}^{NF_{Z_\mathsf{X}} \times K}$ \Rightarrow Reduce params. from $\mathit{MF}_{Z_Y}\mathit{NF}_{Z_X}$ to $(\mathit{MF}_{Z_Y} + \mathit{NF}_{Z_X})\mathit{KN}$ ▶ Kronecker Structure $\mathbf{W} = \mathbf{W}_F^T \otimes \mathbf{W}_N \Rightarrow \mathbf{Z}_Y = \mathbf{W}_N \mathbf{Z}_X \mathbf{W}_F$ \Rightarrow Using property vec $(\mathbf{ABC}) = (\mathbf{C}^T \otimes \mathbf{A})$ vec (\mathbf{B}) \Rightarrow $\mathsf{W}_{N} \in \mathbb{R}^{M \times N}$ combines information across nodes \Rightarrow $\bm{\mathsf{W}}_{\bm{\mathsf{F}}} \in \mathbb{R}^{\mathsf{F}_{Z_\mathsf{X}} \times \mathsf{F}_{Z_\mathsf{Y}}}$ combines information across features \Rightarrow Both W_N and W_F can be fixed or learned \Rightarrow If both are learned, alternating fashion

▶ Permutation matrix

 \Rightarrow Cells in Z_X are rearranged to form Z_Y

医尿管的尿管的

▶ Provide two examples that are

- \Rightarrow Easy to implement
- \Rightarrow Agnostic to the underlying task \rightarrow applicable in any situation

御 ▶ イヨ ▶ イヨ ▶ |

▶ Provide two examples that are

- \Rightarrow Easy to implement
- \Rightarrow Agnostic to the underlying task \rightarrow applicable in any situation
- \blacktriangleright Z_Y = Z_X
	- \Rightarrow Set $F_{Z_X}=M$ in $\psi^X_{\mathbf{\Theta}_X}$, and $F_{Z_Y}=N$ in $\psi^Y_{\mathbf{\Theta}_Y}$
	- \Rightarrow Example of **W** as a permutation matrix
	- ⇒ Non-learnable
	- \Rightarrow Equivalence features in node and graph signal

御き メミメ メミメン

▶ Provide two examples that are

- \Rightarrow Easy to implement
- \Rightarrow Agnostic to the underlying task \rightarrow applicable in any situation

$$
\triangleright \mathbf{Z}_Y = \mathbf{Z}_X^T
$$

\n
$$
\Rightarrow \text{Set } F_{Z_X} = M \text{ in } \psi_{\Theta_X}^X \text{, and } F_{Z_Y} = N \text{ in } \psi_{\Theta_Y}^Y
$$

 \Rightarrow Example of **W** as a permutation matrix

- ⇒ Non-learnable
- \Rightarrow Equivalence features in node and graph signal
- \blacktriangleright Z_Y = W_NZ_X

 \Rightarrow Simple Kronecker structure with $W_F = I$

$$
\Rightarrow F_{Z_X}=F_{Z_Y}
$$

 \Rightarrow W_N learned through backpropagation

 $A\equiv\mathbb{R}^n,\ A\equiv\mathbb{R}^n$

Permutation equivariance of IOGNN

▶ Standard GNNs are permutation equivariant

 $\psi(\mathsf{PX},\mathsf{PSP}^{\mathsf{T}})=\mathsf{P}\psi(\mathsf{X},\mathsf{S})$

 \Rightarrow For any permutation matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$

▶ Can we say the same about IOGNN?

 \Rightarrow Input and output are not defined on the same space

 \Rightarrow Cannot apply same permutation to input and output

医单位性骨折

Permutation equivariance of IOGNN

▶ Standard GNNs are permutation equivariant

 $\psi(\mathsf{PX},\mathsf{PSP}^{\mathsf{T}})=\mathsf{P}\psi(\mathsf{X},\mathsf{S})$

 \Rightarrow For any permutation matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$

▶ Can we say the same about IOGNN?

 \Rightarrow Input and output are not defined on the same space

 \Rightarrow Cannot apply same permutation to input and output \blacktriangleright We can instead say

$$
\mathit{f}_{\Theta}(\textbf{P}_{X}\textbf{X}|\textbf{P}_{X}\textbf{S}_{X}\textbf{P}_{X}^{T},\textbf{P}_{Y}\textbf{S}_{Y}\textbf{P}_{Y}^{T})=\textbf{P}_{Y}\mathit{f}_{\Theta}(\textbf{X}|\textbf{S}_{X},\textbf{S}_{Y})
$$

 \Rightarrow Under the assumption that $\psi^Z_{\bf{\Theta}_Z}$ fulfills

$$
\psi_{\Theta_Z}^Z(\textbf{P}_X\textbf{Z})=\textbf{P}_Y\psi_{\Theta_Z}^Z(\textbf{Z})
$$

医牙骨的牙骨的

Permutation equivariance of IOGNN

▶ Standard GNNs are permutation equivariant

 $\psi(\mathsf{PX},\mathsf{PSP}^{\mathsf{T}})=\mathsf{P}\psi(\mathsf{X},\mathsf{S})$

 \Rightarrow For any permutation matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$

▶ Can we say the same about IOGNN?

 \Rightarrow Input and output are not defined on the same space

 \Rightarrow Cannot apply same permutation to input and output \blacktriangleright We can instead say

 $f_{\Theta}(\mathbf{P}_X \mathbf{X} | \mathbf{P}_X \mathbf{S}_X \mathbf{P}_X^{\mathsf{T}}, \mathbf{P}_Y \mathbf{S}_Y \mathbf{P}_Y^{\mathsf{T}}) = \mathbf{P}_Y f_{\Theta}(\mathbf{X} | \mathbf{S}_X, \mathbf{S}_Y)$

 \Rightarrow Under the assumption that $\psi^Z_{\bf{\Theta}_Z}$ fulfills

$$
\psi_{\Theta_Z}^Z(\textbf{P}_X\textbf{Z})=\textbf{P}_Y\psi_{\Theta_Z}^Z(\textbf{Z})
$$

As an example, consider the transformation $Z_Y = W_N Z_X$ \Rightarrow Rearrange weight matrix as $\mathsf{W}'_\mathsf{N} = \mathsf{P}_Y \underset{\prec \mathsf{N}}{\mathsf{W}} \mathsf{N}_Y^\mathsf{T}$ $\mathsf{W}'_\mathsf{N} = \mathsf{P}_Y \underset{\prec \mathsf{N}}{\mathsf{W}} \mathsf{N}_Y^\mathsf{T}$

Numerical Results - Subgraph Feature Estimation ii

▶ From a graph G we sample two subgraphs G_X and G_Y

- \Rightarrow G is the Cora graph
- \Rightarrow Mapping from node features in \mathcal{G}_X to labels in \mathcal{G}_Y

(ロ) (個) (差) (差) (

Universidad Rey Juan Carlos

Numerical Results - Image Interpolation

- ▶ Framework suited for the interpolation task
	- \Rightarrow \mathcal{G}_X is a coarse/subgraph of \mathcal{G}_Y
	- \Rightarrow Interpolation from signal in coarse G_X to fine G_Y
- ▶ Image interpolation
	- \Rightarrow Superpixels + Region Adjacency Graph

 $\mathcal{A} \ \overline{\cong} \ \mathcal{B} \ \ \mathcal{A} \ \overline{\cong} \ \mathcal{B}$

Numerical Results - Image Interpolation

- ▶ Framework suited for the interpolation task
	- \Rightarrow \mathcal{G}_X is a coarse/subgraph of \mathcal{G}_Y
	- \Rightarrow Interpolation from signal in coarse G_X to fine G_Y
- ▶ Image interpolation
	- \Rightarrow Superpixels + Region Adjacency Graph

(ロ) (個) (差) (差) (

Numerical Results - Image Interpolation

- ▶ Framework suited for the interpolation task
	- \Rightarrow \mathcal{G}_X is a coarse/subgraph of \mathcal{G}_Y
	- \Rightarrow Interpolation from signal in coarse G_X to fine G_Y
- ▶ Image interpolation
	- \Rightarrow Superpixels + Region Adjacency Graph

▶ Interpolation in the field of CFD

- ⇒ Solved via Navier-Stokes PDE on meshes
- \Rightarrow Fine meshes are computationally costly

▶ Fully supervised setting

 $\mathcal{A} \ \overline{\cong} \ \mathcal{B} \ \ \mathcal{A} \ \overline{\cong} \ \mathcal{B}$

Connections with CCA and SSL - Previous work

▶ Canonical Correlation Analysis (CCA)

- \Rightarrow Given two views of data $\mathbf{X} \in \mathbb{R}^{N \times F_{\mathsf{X}}}$ and $\mathbf{Y} \in \mathbb{R}^{N \times F_{\mathsf{Y}}}$
- \Rightarrow Compute transformations $\mathbf{U} \in \mathbb{R}^{F_X \times F_Z}$ and $\mathbf{V} \in \mathbb{R}^{F_Y \times F_Z}$
- \Rightarrow Seek maximal correlation in transformed space

$$
\begin{aligned} & \underset{\textbf{U}, \textbf{V}}{\text{max}} \ \text{tr}(\textbf{U}^{\text{T}} \boldsymbol{\Sigma}_{XY} \textbf{V}) \\ & \text{s. to:} \ \textbf{U}^{\text{T}} \boldsymbol{\Sigma}_{XX} \textbf{U} = \textbf{V}^{\text{T}} \boldsymbol{\Sigma}_{YY} \textbf{V} = \textbf{I}, \end{aligned}
$$

何 ▶ イヨ ▶ イヨ ▶ │

Connections with CCA and SSL - Previous work

▶ Canonical Correlation Analysis (CCA)

- \Rightarrow Given two views of data $\mathbf{X} \in \mathbb{R}^{N \times F_{\mathsf{X}}}$ and $\mathbf{Y} \in \mathbb{R}^{N \times F_{\mathsf{Y}}}$ \Rightarrow Compute transformations $\mathbf{U} \in \mathbb{R}^{F_X \times F_Z}$ and $\mathbf{V} \in \mathbb{R}^{F_Y \times F_Z}$
- \Rightarrow Seek maximal correlation in transformed space

$$
\begin{aligned} & \underset{\boldsymbol{U},\boldsymbol{V}}{\text{max}} \ \text{tr}(\boldsymbol{U}^{\top}\boldsymbol{\Sigma}_{XY}\boldsymbol{V}) \\ & \text{s. to: } \boldsymbol{U}^{\top}\boldsymbol{\Sigma}_{XX}\boldsymbol{U} = \boldsymbol{V}^{\top}\boldsymbol{\Sigma}_{YY}\boldsymbol{V} = \boldsymbol{I}, \end{aligned}
$$

▶ Deep setting: Deep CCA

$$
\begin{array}{l} \displaystyle \max_{\boldsymbol{\Theta}_{X},\boldsymbol{\Theta}_{Y}} \text{tr}\left(f_{\boldsymbol{\Theta}_{X}}(\boldsymbol{X})^{\top}f_{\boldsymbol{\Theta}_{Y}}(\boldsymbol{Y})\right) \\ \text{s. to: } f_{\boldsymbol{\Theta}_{X}}(\boldsymbol{X})^{\top}f_{\boldsymbol{\Theta}_{X}}(\boldsymbol{X}) = f_{\boldsymbol{\Theta}_{Y}}(\boldsymbol{Y})^{\top}f_{\boldsymbol{\Theta}_{Y}}(\boldsymbol{Y}) = \boldsymbol{I} \end{array}
$$

御 ▶ イヨ ▶ イヨ ▶ │

Connections with CCA and SSL - Previous work

▶ Canonical Correlation Analysis (CCA)

- \Rightarrow Given two views of data $\mathbf{X} \in \mathbb{R}^{N \times F_{\mathsf{X}}}$ and $\mathbf{Y} \in \mathbb{R}^{N \times F_{\mathsf{Y}}}$
- \Rightarrow Compute transformations $\mathbf{U} \in \mathbb{R}^{F_X \times F_Z}$ and $\mathbf{V} \in \mathbb{R}^{F_Y \times F_Z}$
- \Rightarrow Seek maximal correlation in transformed space

$$
\begin{aligned} & \underset{\boldsymbol{U},\boldsymbol{V}}{\text{max }} \text{tr}(\boldsymbol{U}^{\top}\boldsymbol{\Sigma}_{XY}\boldsymbol{V}) \\ & \text{s. to: } \boldsymbol{U}^{\top}\boldsymbol{\Sigma}_{XX}\boldsymbol{U} = \boldsymbol{V}^{\top}\boldsymbol{\Sigma}_{YY}\boldsymbol{V} = \boldsymbol{I}, \end{aligned}
$$

▶ Deep setting: Deep CCA

$$
\max_{\mathbf{\Theta}_X, \mathbf{\Theta}_Y} \text{tr} \left(f_{\mathbf{\Theta}_X}(\mathbf{X})^{\mathsf{T}} f_{\mathbf{\Theta}_Y}(\mathbf{Y}) \right)
$$

s. to: $f_{\mathbf{\Theta}_X}(\mathbf{X})^{\mathsf{T}} f_{\mathbf{\Theta}_X}(\mathbf{X}) = f_{\mathbf{\Theta}_Y}(\mathbf{Y})^{\mathsf{T}} f_{\mathbf{\Theta}_Y}(\mathbf{Y}) = \mathbf{I}$

 \Rightarrow Slight different reformulation (CCA-SSG)

$$
\min_{\boldsymbol{\Theta}_{\mathsf{X}},\boldsymbol{\Theta}_{\mathsf{Y}}}\|f_{\boldsymbol{\Theta}_{\mathsf{X}}}(\boldsymbol{\mathsf{X}})-f_{\boldsymbol{\Theta}_{\mathsf{Y}}}(\boldsymbol{\mathsf{Y}})\|_{\text{F}}^2+\lambda\left(\mathcal{L}_{\text{SDL}}(f_{\boldsymbol{\Theta}_{\mathsf{X}}}(\boldsymbol{\mathsf{X}}))+\mathcal{L}_{\text{SDL}}(f_{\boldsymbol{\Theta}_{\mathsf{Y}}}(\boldsymbol{\mathsf{Y}}))\right)
$$

医尿管 医尿管下的

Connections with CCA and SSL

 \triangleright We can apply our architecture to the CCA setting

 \Rightarrow Now we know both **X** and **Y**

 \Rightarrow Goal: find alternative representations \mathbf{Z}_X and \mathbf{Z}_Y

 $\overline{1}$

÷. 医尿囊肿

Connections with CCA and SSL

 \triangleright We can apply our architecture to the CCA setting

 \Rightarrow Now we know both **X** and **Y**

 \Rightarrow Goal: find alternative representations \mathbf{Z}_X and \mathbf{Z}_Y

▶ Aim to solve

$$
\max_{\Theta_X, \Theta_Z, \Theta_Y} tr(\psi_{\Theta_Z}^Z(\psi_{\Theta_X}^X(\mathbf{X}|\mathcal{G}_X))^T \psi_{\Theta_Y}^{Y-1}(\mathbf{Y}|\mathcal{G}_Y))
$$

s. to: $\psi_{\Theta_Z}^Z(\psi_{\Theta_X}^X(\mathbf{X}|\mathcal{G}_X))^T \psi_{\Theta_Z}^Z(\psi_{\Theta_X}^X(\mathbf{X}|\mathcal{G}_X)) =$
$$
\psi_{\Theta_Y}^{Y-1}(\mathbf{Y}|\mathcal{G}_Y)^T \psi_{\Theta_Y}^{Y-1}(\mathbf{Y}|\mathcal{G}_Y) = \mathbf{I}
$$

 $\overline{1}$

÷. (ト) モラト

Numerical Results - Self-Supervised Learning

- \Rightarrow G is a common graph with two views
- \Rightarrow G_X edges dropped, features masked
- \Rightarrow \mathcal{G}_Y subgraph with perfect information
- ▶ Perform node classification via transformed views

 \Rightarrow SSL setting

Closing remarks

- \triangleright Novel NN architecture to learn mapping from (x, \mathcal{G}_X) to (y, \mathcal{G}_Y)
- ▶ Key idea: latent common space and two graph-aware NN
	- \Rightarrow Step 1) graph-aware NN from (x, \mathcal{G}_X) to latent space \mathbb{Z}_X
	- \Rightarrow Step 2) transformation between \mathbb{Z}_X in \mathcal{G}_X to \mathbb{Z}_Y in \mathcal{G}_Y
	- \Rightarrow Step 3) graph-aware NN from latent space Z_Y to (y, \mathcal{G}_Y)
	- \Rightarrow Parameters jointly learned (backpropag using input-output pairs)

御き メミメ メミメー

Closing remarks

- \triangleright Novel NN architecture to learn mapping from (x, \mathcal{G}_X) to (y, \mathcal{G}_Y)
- ▶ Key idea: latent common space and two graph-aware NN
	- \Rightarrow Step 1) graph-aware NN from (x, \mathcal{G}_X) to latent space \mathbb{Z}_X
	- \Rightarrow Step 2) transformation between \mathbb{Z}_X in \mathcal{G}_X to \mathbb{Z}_Y in \mathcal{G}_Y
	- \Rightarrow Step 3) graph-aware NN from latent space Z_Y to (y, \mathcal{G}_Y)
	- \Rightarrow Parameters jointly learned (backpropag using input-output pairs)
- \blacktriangleright Taxonomy of functions for transformation ψ ₇
	- \Rightarrow Several design decisions
	- \Rightarrow Flexible design to accommodate different scenarios

何 ▶ イヨ ▶ イヨ ▶

Closing remarks

- \triangleright Novel NN architecture to learn mapping from $(\mathbf{x}, \mathcal{G}_X)$ to $(\mathbf{y}, \mathcal{G}_Y)$
- ▶ Key idea: latent common space and two graph-aware NN
	- \Rightarrow Step 1) graph-aware NN from (x, \mathcal{G}_X) to latent space \mathbb{Z}_X
	- \Rightarrow Step 2) transformation between \mathbb{Z}_X in \mathcal{G}_X to \mathbb{Z}_Y in \mathcal{G}_Y
	- \Rightarrow Step 3) graph-aware NN from latent space Z_Y to (y, \mathcal{G}_Y)
	- \Rightarrow Parameters jointly learned (backpropag using input-output pairs)
- \blacktriangleright Taxonomy of functions for transformation ψ ₇
	- \Rightarrow Several design decisions
	- \Rightarrow Flexible design to accommodate different scenarios
- ▶ Analogies with CCA and SSL
	- \Rightarrow Able to learn alternative informative representations
	- ⇒ Used for downstream tasks

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Questions at: victor.tenorio@urjc.es

Victor M. Tenorio **Exploiting the Structure of Two Graphs via Graph Neural Networks** 19/19 19/19

つくへ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ .