

Exploiting the Structure of Two Graphs via Graph Neural Networks

Victor M. Tenorio

King Juan Carlos University - Madrid (Spain) In collaboration with Antonio G. Marques

> Universidad Rey Juan Carlos

July 10, 2024

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Introduction

Problem formulation Numerical Results

Connections with CCA and SSL

Numerical Results

Conclusions

æ

Introducción

Each day huge amounts of data are generated

- \Rightarrow **Irregular** structure
- Need to find new ways to
 - \Rightarrow Represent the data
 - \Rightarrow Learn from it

★ ∃ ► < ∃ ►</p>

- Representation of irregular data
 - \Rightarrow Via more complex structures \rightarrow graphs
- Learning over irregular data
 - \Rightarrow New machine learning algorithms
- Join both in graph neural networks (GNNs)

This work: input and output are defined over different graphs

A graph G: N nodes and links connecting them
⇒ G ≡ (V, E, A)
⇒ V = {1,..., N}, E ⊆ V × V, A ∈ ℝ^{N×N}
Define a signal x ∈ ℝ^N on top of the graph

 $\Rightarrow x_i = \text{Signal value at node } i$

()

Preliminaries of Graph Signal Processing

- A graph \mathcal{G} : N nodes and links connecting them $\Rightarrow \mathcal{G} \equiv (\mathcal{V}, \mathcal{E}, \mathbf{A})$
 - $\Rightarrow \mathcal{V} = \{1, \dots, N\}, \ \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}, \ \mathbf{A} \in \mathbb{R}^{N \times N}$
- ► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{Signal value at node } i$
- Associated with G → graph-shift operator (GSO) S ∈ ℝ^{N×N}
 ⇒ S_{ij} ≠ 0 if and only if i = j or (i, j) ∈ E (local structure in G)
- ▶ Graph Signal Processing \rightarrow Exploit structure encoded in S to process x
- First linear processing: graph filters, graph Fourier transform...
- ► Then neural nets: GCNNs, GRNNs, G-Tensor, G-Autoencoders

(4) E > (4) E >

- \Rightarrow Input graph signal \mathcal{G} , output scalar (class)
- \Rightarrow Input graph signal \mathcal{G} , output graph signal \mathcal{G} (embeddings)

個 と く き と く き と

- \Rightarrow Input graph signal \mathcal{G} , output scalar (class)
- \Rightarrow Input graph signal \mathcal{G} , output graph signal \mathcal{G} (embeddings)
- ▶ Here, consider two signals, each defined on a different graph:
 - \mathcal{G}_X with N nodes (signal $\mathbf{x} \in \mathbb{R}^N$), and graph-shift operator \mathbf{S}_X
 - \mathcal{G}_{Y} with *M* nodes (signal $\mathbf{y} \in \mathbb{R}^{M}$), and graph-shift operator \mathbf{S}_{Y}

★ ∃ ► < ∃ ►</p>

- \Rightarrow Input graph signal \mathcal{G} , output scalar (class)
- \Rightarrow Input graph signal \mathcal{G} , output graph signal \mathcal{G} (embeddings)
- ▶ Here, consider two signals, each defined on a different graph:
 - ▶ \mathcal{G}_X with *N* nodes (signal $\mathbf{x} \in \mathbb{R}^N$), and graph-shift operator \mathbf{S}_X ▶ \mathcal{G}_Y with *M* nodes (signal $\mathbf{y} \in \mathbb{R}^M$), and graph-shift operator \mathbf{S}_Y
- ▶ Goal: Learn the nonlinear mapping $f_{\Theta} : \mathbb{R}^N \to \mathbb{R}^M$

$$\mathbf{y} = f_{\mathbf{\Theta}}(\mathbf{x} \mid \mathcal{G}_{\mathbf{X}}, \mathcal{G}_{\mathbf{Y}})$$

exploiting \mathcal{G}_X and \mathcal{G}_Y and using a Neural Network (NN) architecture

回 と く ヨ と く ヨ と

- \Rightarrow Input graph signal \mathcal{G} , output scalar (class)
- \Rightarrow Input graph signal \mathcal{G} , output graph signal \mathcal{G} (embeddings)
- ▶ Here, consider two signals, each defined on a different graph:
 - ▶ \mathcal{G}_X with *N* nodes (signal $\mathbf{x} \in \mathbb{R}^N$), and graph-shift operator \mathbf{S}_X ▶ \mathcal{G}_Y with *M* nodes (signal $\mathbf{y} \in \mathbb{R}^M$), and graph-shift operator \mathbf{S}_Y
- ▶ Goal: Learn the nonlinear mapping $f_{\Theta} : \mathbb{R}^N \to \mathbb{R}^M$

$$\mathbf{y} = f_{\mathbf{\Theta}}(\mathbf{x} \mid \mathcal{G}_{\mathbf{X}}, \mathcal{G}_{\mathbf{Y}})$$

exploiting \mathcal{G}_X and \mathcal{G}_Y and using a Neural Network (NN) architecture

Key: Consider latent space **Z** to transform between graphs

回 と く ヨ と く ヨ と

Common underlying space I

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Common underlying space I

More precisely

 $\Rightarrow \psi_{\Theta_X}^{X}$ standard GNN operating over \mathcal{G}_X

 $\Rightarrow \psi_{\Theta_{Y}}^{Y}$ standard GNN operating over \mathcal{G}_{Y}

 $\Rightarrow \psi^{Z}_{\Theta_{z}}$ transformation between domains: design covered later

<回>< E> < E> < E> <

Common underlying space II

The input-output mapping is then

$$f_{\Theta}(\mathbf{X}|\mathcal{G}_{X},\mathcal{G}_{Y}) = \psi_{\Theta_{Y}}^{Y} \circ \psi_{\Theta_{Z}}^{Z} \circ \psi_{\Theta_{X}}^{X} ; \quad \hat{\mathbf{Y}} = \psi_{\Theta_{Y}}^{Y}(\psi_{\Theta_{Z}}^{Z}(\psi_{\Theta_{X}}^{X}(\mathbf{X}|\mathcal{G}_{X}))|\mathcal{G}_{Y})$$

7/19

▲御▶ ▲ 臣▶ ▲ 臣▶

Common underlying space II

The input-output mapping is then

 $f_{\Theta}(\mathbf{X}|\mathcal{G}_{X},\mathcal{G}_{Y}) = \psi_{\Theta_{Y}}^{Y} \circ \psi_{\Theta_{Z}}^{Z} \circ \psi_{\Theta_{X}}^{X} ; \quad \hat{\mathbf{Y}} = \psi_{\Theta_{Y}}^{Y}(\psi_{\Theta_{Z}}^{Z}(\psi_{\Theta_{X}}^{X}(\mathbf{X}|\mathcal{G}_{X}))|\mathcal{G}_{Y})$

► Parameters Θ_X, Θ_Y and (possibly) Θ_Z ⇒ Learned through backpropagation ⇒ Assumption: ψ^Z_{Θ_Z} is differentiable

()

Common underlying space II

The input-output mapping is then

 $f_{\Theta}(\mathbf{X}|\mathcal{G}_{X},\mathcal{G}_{Y}) = \psi_{\Theta_{Y}}^{Y} \circ \psi_{\Theta_{Z}}^{Z} \circ \psi_{\Theta_{X}}^{X} ; \quad \hat{\mathbf{Y}} = \psi_{\Theta_{Y}}^{Y}(\psi_{\Theta_{Z}}^{Z}(\psi_{\Theta_{X}}^{X}(\mathbf{X}|\mathcal{G}_{X}))|\mathcal{G}_{Y})$

Parameters Θ_X, Θ_Y and (possibly) Θ_Z
 ⇒ Learned through backpropagation
 ⇒ Assumption: ψ^Z_{Θ_Z} is differentiable
 Key in this approach: design of ψ^Z_{Θ_Z}

∃ ► < ∃ ►</p>

Design of $\psi_{\Theta_{Z}}^{Z}$

• Several design decisions \rightarrow taxonomy

Design of $\psi_{\Theta_Z}^Z$

- ► Several design decisions → taxonomy
- Domain specific vs agnostic to the task
 Incorporate info about the task

★ 문 ► ★ 문 ►

Design of $\psi_{\Theta_Z}^Z$

- ► Several design decisions → taxonomy
- Domain specific vs agnostic to the task
 Incorporate info about the task
 - Learnable vs fixed in advance

- \Rightarrow Propose a parametric function with parameters Θ_Z
- $\Rightarrow \Theta_Z$ learned through gradient descent and backpropagation

B → < B

Design of $\psi^{Z}_{\Theta_{Z}}$

- ► Several design decisions → taxonomy
- Domain specific vs agnostic to the task
 Incorporate info about the task
 - Learnable vs fixed in advance

- \Rightarrow Propose a parametric function with parameters Θ_Z
- $\Rightarrow \Theta_Z$ learned through gradient descent and backpropagation

Linear vs more complex transformations

 \Rightarrow Most general case of linear transformation

$$\operatorname{vec}(\mathsf{Z}_Y) = \mathsf{W}\operatorname{vec}(\mathsf{Z}_X),$$

- \Rightarrow With (possibly learnable) transformation $\mathbf{W} \in \mathbb{R}^{MF_{Z_Y} \times NF_{Z_X}}$
- \Rightarrow Huge number of parameters if graphs are large \rightarrow overfitting
- \Rightarrow Can incorporate structure to the transformation
- \Rightarrow More complex can include e.g. MLP

► Low Rank
$$\mathbf{W} = \mathbf{W}_{Y}\mathbf{W}_{X}^{\mathsf{T}}$$

 $\Rightarrow \mathbf{W}_{Y} \in \mathbb{R}^{MF_{Z_{Y}} \times K}$ and $\mathbf{W}_{X} \in \mathbb{R}^{NF_{Z_{X}} \times K}$
 \Rightarrow Reduce params. from $MF_{Z_{Y}}NF_{Z_{X}}$ to $(MF_{Z_{Y}} + NF_{Z_{X}})K$

Ξ.

イロト イヨト イヨト イヨト

► Low Rank
$$\mathbf{W} = \mathbf{W}_{Y}\mathbf{W}_{X}^{\mathsf{T}}$$

 $\Rightarrow \mathbf{W}_{Y} \in \mathbb{R}^{MF_{Z_{Y}} \times K}$ and $\mathbf{W}_{X} \in \mathbb{R}^{NF_{Z_{X}} \times K}$
 \Rightarrow Reduce params. from $MF_{Z_{Y}}NF_{Z_{X}}$ to $(MF_{Z_{Y}} + NF_{Z_{X}})K$

► Kronecker Structure $\mathbf{W} = \mathbf{W}_F^I \otimes \mathbf{W}_N \Rightarrow \mathbf{Z}_Y = \mathbf{W}_N \mathbf{Z}_X \mathbf{W}_F$ ⇒ Using property vec(**ABC**) = (**C**^T \otimes **A**)vec(**B**)

・ロト ・回 ト ・ヨト ・ヨト

• Low Rank $\mathbf{W} = \mathbf{W}_{Y}\mathbf{W}_{X}^{\mathsf{T}}$

 $\Rightarrow \mathbf{W}_{Y} \in \mathbb{R}^{MF_{Z_{Y}} \times K}$ and $\mathbf{W}_{X} \in \mathbb{R}^{NF_{Z_{X}} \times K}$

 \Rightarrow Reduce params. from $MF_{Z_Y}NF_{Z_X}$ to $(MF_{Z_Y} + NF_{Z_X})K$

• Kronecker Structure $\mathbf{W} = \mathbf{W}_F^T \otimes \mathbf{W}_N \Rightarrow \mathbf{Z}_Y = \mathbf{W}_N \mathbf{Z}_X \mathbf{W}_F$

- \Rightarrow Using property vec(ABC) = (C^T \otimes A)vec(B)
- \Rightarrow $\mathbf{W}_{N} \in \mathbb{R}^{M imes N}$ combines information across nodes
- $\Rightarrow \boldsymbol{W}_{F} \in \mathbb{R}^{F_{Z_{X}} \times F_{Z_{Y}}} \text{ combines information across features}$
- \Rightarrow Both \mathbf{W}_N and \mathbf{W}_F can be fixed or learned
- \Rightarrow If both are learned, alternating fashion

高 と く ヨ と く ヨ と

• Low Rank $\mathbf{W} = \mathbf{W}_Y \mathbf{W}_X^\mathsf{T}$

 $\Rightarrow \mathbf{W}_{Y} \in \mathbb{R}^{MF_{Z_{Y}} \times K}$ and $\mathbf{W}_{X} \in \mathbb{R}^{NF_{Z_{X}} \times K}$

 \Rightarrow Reduce params. from $MF_{Z_Y}NF_{Z_X}$ to $(MF_{Z_Y} + NF_{Z_X})K$

• Kronecker Structure $\mathbf{W} = \mathbf{W}_F^T \otimes \mathbf{W}_N \Rightarrow \mathbf{Z}_Y = \mathbf{W}_N \mathbf{Z}_X \mathbf{W}_F$

 \Rightarrow Using property vec(ABC) = (C^T \otimes A)vec(B)

 \Rightarrow **W**_N $\in \mathbb{R}^{M \times N}$ combines information across nodes

 $\Rightarrow \boldsymbol{W}_{F} \in \mathbb{R}^{F_{Z_{X}} \times F_{Z_{Y}}} \text{ combines information across features}$

 \Rightarrow Both \mathbf{W}_N and \mathbf{W}_F can be fixed or learned

 \Rightarrow If both are learned, alternating fashion

Permutation matrix

 \Rightarrow Cells in \mathbf{Z}_X are rearranged to form \mathbf{Z}_Y

高 と く ヨ と く ヨ と

Provide two examples that are

- \Rightarrow Easy to implement
- \Rightarrow Agnostic to the underlying task \rightarrow applicable in any situation

日とくほとくほど

Provide two examples that are

- \Rightarrow Easy to implement
- \Rightarrow Agnostic to the underlying task \rightarrow applicable in any situation

$$\blacktriangleright \mathbf{Z}_Y = \mathbf{Z}_X^\mathsf{T}$$

- \Rightarrow Set $F_{Z_X} = M$ in $\psi_{\Theta_X}^X$, and $F_{Z_Y} = N$ in $\psi_{\Theta_Y}^Y$
- \Rightarrow Example of **W** as a permutation matrix
- \Rightarrow Non-learnable
- \Rightarrow Equivalence features in node and graph signal

▶ ★ 臣 ▶ ★ 臣 ▶

Provide two examples that are

- \Rightarrow Easy to implement
- \Rightarrow Agnostic to the underlying task \rightarrow applicable in any situation

►
$$\mathbf{Z}_Y = \mathbf{Z}_X^T$$

⇒ Set $F_{Z_X} = M$ in $\psi_{\mathbf{\Theta}_Y}^X$, and $F_{Z_Y} = N$ in $\psi_{\mathbf{\Theta}_Y}^Y$

- \Rightarrow Example of **W** as a permutation matrix
- \Rightarrow Non-learnable
- \Rightarrow Equivalence features in node and graph signal
- $\blacktriangleright \mathbf{Z}_Y = \mathbf{W}_N \mathbf{Z}_X$
 - \Rightarrow Simple Kronecker structure with $\mathbf{W}_{F} = \mathbf{I}$

$$\Rightarrow F_{Z_X} = F_{Z_Y}$$

 \Rightarrow **W**_N learned through backpropagation

伺下 イヨト イヨト

Permutation equivariance of IOGNN

Standard GNNs are permutation equivariant

 $\psi(\mathbf{P}\mathbf{X}, \mathbf{P}\mathbf{S}\mathbf{P}^{\mathsf{T}}) = \mathbf{P}\psi(\mathbf{X}, \mathbf{S})$

 \Rightarrow For any permutation matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$

Can we say the same about IOGNN?

 \Rightarrow Input and output are not defined on the same space

 \Rightarrow Cannot apply same permutation to input and output

• • = • • = •

Permutation equivariance of IOGNN

Standard GNNs are permutation equivariant

 $\psi(\mathbf{P}\mathbf{X}, \mathbf{P}\mathbf{S}\mathbf{P}^{\mathsf{T}}) = \mathbf{P}\psi(\mathbf{X}, \mathbf{S})$

 \Rightarrow For any permutation matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$

Can we say the same about IOGNN?

 \Rightarrow Input and output are not defined on the same space

⇒ Cannot apply same permutation to input and output
 ▶ We can instead say

 $f_{\Theta}(\mathbf{P}_{X}\mathbf{X}|\mathbf{P}_{X}\mathbf{S}_{X}\mathbf{P}_{X}^{\mathsf{T}},\mathbf{P}_{Y}\mathbf{S}_{Y}\mathbf{P}_{Y}^{\mathsf{T}}) = \mathbf{P}_{Y}f_{\Theta}(\mathbf{X}|\mathbf{S}_{X},\mathbf{S}_{Y})$

 \Rightarrow Under the assumption that $\psi^{Z}_{\Theta_{7}}$ fulfills

$$\psi_{\Theta_Z}^Z(\mathbf{P}_X\mathbf{Z}) = \mathbf{P}_Y\psi_{\Theta_Z}^Z(\mathbf{Z})$$

Permutation equivariance of IOGNN

Standard GNNs are permutation equivariant

 $\psi(\mathbf{P}\mathbf{X}, \mathbf{P}\mathbf{S}\mathbf{P}^{\mathsf{T}}) = \mathbf{P}\psi(\mathbf{X}, \mathbf{S})$

 \Rightarrow For any permutation matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$

Can we say the same about IOGNN?

 \Rightarrow Input and output are not defined on the same space

 \Rightarrow Cannot apply same permutation to input and output \blacktriangleright We can instead say

 $f_{\Theta}(\mathbf{P}_{X}\mathbf{X}|\mathbf{P}_{X}\mathbf{S}_{X}\mathbf{P}_{X}^{\mathsf{T}},\mathbf{P}_{Y}\mathbf{S}_{Y}\mathbf{P}_{Y}^{\mathsf{T}}) = \mathbf{P}_{Y}f_{\Theta}(\mathbf{X}|\mathbf{S}_{X},\mathbf{S}_{Y})$

 \Rightarrow Under the assumption that $\psi^{Z}_{\Theta_{Z}}$ fulfills

$$\psi_{\Theta_{Z}}^{Z}(\mathbf{P}_{X}\mathbf{Z}) = \mathbf{P}_{Y}\psi_{\Theta_{Z}}^{Z}(\mathbf{Z})$$

• As an example, consider the transformation $\mathbf{Z}_Y = \mathbf{W}_N \mathbf{Z}_X$

 \Rightarrow Rearrange weight matrix as $\mathbf{W}_{N}^{\prime} = \mathbf{P}_{Y} \mathbf{W}_{N} \mathbf{P}_{X}^{\mathsf{T}}$

Numerical Results - Subgraph Feature Estimation 👸

• From a graph \mathcal{G} we sample two subgraphs \mathcal{G}_X and \mathcal{G}_Y

- $\Rightarrow \mathcal{G}$ is the Cora graph
- \Rightarrow Mapping from node features in \mathcal{G}_X to labels in \mathcal{G}_Y

・ロト ・四ト ・ヨト ・ヨト

Numerical Results - Image Interpolation

- Framework suited for the interpolation task
 - $\Rightarrow \mathcal{G}_X$ is a coarse/subgraph of \mathcal{G}_Y
 - \Rightarrow Interpolation from signal in coarse \mathcal{G}_X to fine \mathcal{G}_Y
- Image interpolation
 - \Rightarrow Superpixels + Region Adjacency Graph

Numerical Results - Image Interpolation

・ロト ・四ト ・ヨト ・ヨト

- Framework suited for the interpolation task
 - $\Rightarrow \mathcal{G}_X$ is a coarse/subgraph of \mathcal{G}_Y
 - \Rightarrow Interpolation from signal in coarse \mathcal{G}_X to fine \mathcal{G}_Y
- Image interpolation
 - \Rightarrow Superpixels + Region Adjacency Graph

Numerical Results - Image Interpolation

- Framework suited for the interpolation task
 - $\Rightarrow \mathcal{G}_X$ is a coarse/subgraph of \mathcal{G}_Y
 - \Rightarrow Interpolation from signal in coarse \mathcal{G}_X to fine \mathcal{G}_Y
- Image interpolation
 - \Rightarrow Superpixels + Region Adjacency Graph

13/19

Interpolation in the field of CFD

- \Rightarrow Solved via Navier-Stokes PDE on meshes
- \Rightarrow Fine meshes are computationally costly

Fully supervised setting

	Interpolation	Generalization
CFD-GCN*	1,8e-02	5,4e-02
GCN*	1,4e-02	9,5e-02
IOGCN-W	6,7e-03	4,1e-02
IOGCN-S	1,7e-02	3,7e-02
IOGAT-W	8,7e-03	6,6e-02
IOGAT-S	8,3e-03	6,2e-02
IOMLP-W	8,4e-03	4,0e-02
GAT	1,1e-02	1,1e-01

- ▲ 문 ▶ - ▲ 문 ▶

Connections with CCA and SSL - Previous work

Universidad Rey Juan Carlos

Canonical Correlation Analysis (CCA)

- \Rightarrow Given two views of data $\mathbf{X} \in \mathbb{R}^{N imes F_X}$ and $\mathbf{Y} \in \mathbb{R}^{N imes F_Y}$
- \Rightarrow Compute transformations $\bm{U} \in \mathbb{R}^{F_X \times F_Z}$ and $\bm{V} \in \mathbb{R}^{F_Y \times F_Z}$
- \Rightarrow Seek maximal correlation in transformed space

$$\label{eq:started_start} \begin{split} & \max_{\boldsymbol{U},\boldsymbol{V}} \mathsf{tr}(\boldsymbol{U}^{\mathsf{T}}\boldsymbol{\Sigma}_{XY}\boldsymbol{V}) \\ \text{s. to: } \boldsymbol{U}^{\mathsf{T}}\boldsymbol{\Sigma}_{XX}\boldsymbol{U} = \boldsymbol{V}^{\mathsf{T}}\boldsymbol{\Sigma}_{YY}\boldsymbol{V} = \boldsymbol{I}, \end{split}$$

伺 とう ヨ とう とう とう

Connections with CCA and SSL - Previous work

Universidad Universidad Rey Juan Carlos

Canonical Correlation Analysis (CCA)

- \Rightarrow Given two views of data $\bm{X} \in \mathbb{R}^{N \times F_X}$ and $\bm{Y} \in \mathbb{R}^{N \times F_Y}$
- \Rightarrow Compute transformations $\mathbf{U} \in \mathbb{R}^{F_X \times F_Z}$ and $\mathbf{V} \in \mathbb{R}^{F_Y \times F_Z}$
- \Rightarrow Seek maximal correlation in transformed space

$$\begin{split} & \max_{\boldsymbol{U},\boldsymbol{V}} \operatorname{tr}(\boldsymbol{U}^{\mathsf{T}}\boldsymbol{\Sigma}_{XY}\boldsymbol{V}) \\ & \text{s. to: } \boldsymbol{U}^{\mathsf{T}}\boldsymbol{\Sigma}_{XX}\boldsymbol{U} = \boldsymbol{V}^{\mathsf{T}}\boldsymbol{\Sigma}_{YY}\boldsymbol{V} = \boldsymbol{I}, \end{split}$$

Deep setting: Deep CCA

$$\begin{split} & \max_{\Theta_X,\Theta_Y} \, \mathrm{tr} \left(f_{\Theta_X}(\mathbf{X})^{\mathsf{T}} f_{\Theta_Y}(\mathbf{Y}) \right) \\ & \text{s. to:} \, f_{\Theta_X}(\mathbf{X})^{\mathsf{T}} f_{\Theta_X}(\mathbf{X}) = f_{\Theta_Y}(\mathbf{Y})^{\mathsf{T}} f_{\Theta_Y}(\mathbf{Y}) = \mathbf{I} \end{split}$$

伺下 イヨト イヨト

Connections with CCA and SSL - Previous work

Universidad Rey Juan Carlos

Canonical Correlation Analysis (CCA)

- \Rightarrow Given two views of data $\bm{X} \in \mathbb{R}^{N \times F_X}$ and $\bm{Y} \in \mathbb{R}^{N \times F_Y}$
- \Rightarrow Compute transformations $\mathbf{U} \in \mathbb{R}^{F_X \times F_Z}$ and $\mathbf{V} \in \mathbb{R}^{F_Y \times F_Z}$
- \Rightarrow Seek maximal correlation in transformed space

$$\begin{split} \max_{\substack{\mathbf{U},\mathbf{V}\\\mathbf{V},\mathbf{V}}} \mathrm{tr}(\mathbf{U}^{\mathsf{T}} \boldsymbol{\Sigma}_{XY} \mathbf{V}) \\ \mathrm{s. to: } \mathbf{U}^{\mathsf{T}} \boldsymbol{\Sigma}_{XX} \mathbf{U} = \mathbf{V}^{\mathsf{T}} \boldsymbol{\Sigma}_{YY} \mathbf{V} = \mathbf{I}, \end{split}$$

Deep setting: Deep CCA

$$\max_{\boldsymbol{\Theta}_{X},\boldsymbol{\Theta}_{Y}} \operatorname{tr} \left(f_{\boldsymbol{\Theta}_{X}}(\mathbf{X})^{\mathsf{T}} f_{\boldsymbol{\Theta}_{Y}}(\mathbf{Y}) \right)$$

s. to: $f_{\boldsymbol{\Theta}_{X}}(\mathbf{X})^{\mathsf{T}} f_{\boldsymbol{\Theta}_{X}}(\mathbf{X}) = f_{\boldsymbol{\Theta}_{Y}}(\mathbf{Y})^{\mathsf{T}} f_{\boldsymbol{\Theta}_{Y}}(\mathbf{Y}) = \mathbf{I}$

 \Rightarrow Slight different reformulation (CCA-SSG)

$$\min_{\boldsymbol{\Theta}_{X},\boldsymbol{\Theta}_{Y}} \|f_{\boldsymbol{\Theta}_{X}}(\boldsymbol{X}) - f_{\boldsymbol{\Theta}_{Y}}(\boldsymbol{Y})\|_{F}^{2} + \lambda \left(\mathcal{L}_{SDL}(f_{\boldsymbol{\Theta}_{X}}(\boldsymbol{X})) + \mathcal{L}_{SDL}(f_{\boldsymbol{\Theta}_{Y}}(\boldsymbol{Y}))\right)$$

白 ト イヨ ト イヨ ト

Connections with CCA and SSL

We can apply our architecture to the CCA setting

- \Rightarrow Now we know both ${\boldsymbol{\mathsf{X}}}$ and ${\boldsymbol{\mathsf{Y}}}$
- \Rightarrow Goal: find alternative representations Z_X and Z_Y

Connections with CCA and SSL

We can apply our architecture to the CCA setting

- \Rightarrow Now we know both ${\boldsymbol{\mathsf{X}}}$ and ${\boldsymbol{\mathsf{Y}}}$
- \Rightarrow Goal: find alternative representations Z_X and Z_Y

Aim to solve

$$\max_{\Theta_{X},\Theta_{Z},\Theta_{Y}} \operatorname{tr}(\psi_{\Theta_{Z}}^{Z}(\psi_{\Theta_{X}}^{X}(\mathbf{X}|\mathcal{G}_{X}))^{\mathsf{T}}\psi_{\Theta_{Y}}^{{\mathsf{Y}}-1}(\mathbf{Y}|\mathcal{G}_{Y}))$$

s. to: $\psi_{\Theta_{Z}}^{Z}(\psi_{\Theta_{X}}^{X}(\mathbf{X}|\mathcal{G}_{X}))^{\mathsf{T}}\psi_{\Theta_{Z}}^{Z}(\psi_{\Theta_{X}}^{X}(\mathbf{X}|\mathcal{G}_{X})) = \psi_{\Theta_{Y}}^{{\mathsf{Y}}-1}(\mathbf{Y}|\mathcal{G}_{Y})^{\mathsf{T}}\psi_{\Theta_{Y}}^{{\mathsf{Y}}-1}(\mathbf{Y}|\mathcal{G}_{Y}) = \mathbf{I}$

∃ ► < ∃ ►</p>

Universidad

Numerical Results - Self-Supervised Learning

- $\Rightarrow \mathcal{G}$ is a common graph with two views
- $\Rightarrow \mathcal{G}_X$ edges dropped, features masked
- $\Rightarrow \mathcal{G}_{Y}$ subgraph with perfect information
- Perform node classification via transformed views
 - \Rightarrow SSL setting

Closing remarks

- ▶ Novel NN architecture to learn mapping from $(\mathbf{x}, \mathcal{G}_X)$ to $(\mathbf{y}, \mathcal{G}_Y)$
- ▶ Key idea: latent common space and two graph-aware NN
 - \Rightarrow Step 1) graph-aware NN from $(\mathbf{x}, \mathcal{G}_X)$ to latent space \mathbf{Z}_X
 - \Rightarrow Step 2) transformation between Z_X in \mathcal{G}_X to Z_Y in \mathcal{G}_Y
 - \Rightarrow Step 3) graph-aware NN from latent space Z_Y to (y, \mathcal{G}_Y)
 - \Rightarrow Parameters jointly learned (backpropag using input-output pairs)

「ヨト・ヨト・ヨト

Closing remarks

- ▶ Novel NN architecture to learn mapping from $(\mathbf{x}, \mathcal{G}_X)$ to $(\mathbf{y}, \mathcal{G}_Y)$
- ► Key idea: latent common space and two graph-aware NN
 - \Rightarrow Step 1) graph-aware NN from $(\mathbf{x}, \mathcal{G}_X)$ to latent space \mathbf{Z}_X
 - \Rightarrow Step 2) transformation between Z_X in \mathcal{G}_X to Z_Y in \mathcal{G}_Y
 - \Rightarrow Step 3) graph-aware NN from latent space Z_Y to (y, \mathcal{G}_Y)
 - \Rightarrow Parameters jointly learned (backpropag using input-output pairs)
- Taxonomy of functions for transformation ψ_Z
 - \Rightarrow Several design decisions
 - \Rightarrow Flexible design to accommodate different scenarios

Closing remarks

- ▶ Novel NN architecture to learn mapping from $(\mathbf{x}, \mathcal{G}_X)$ to $(\mathbf{y}, \mathcal{G}_Y)$
- ▶ Key idea: latent common space and two graph-aware NN
 - \Rightarrow Step 1) graph-aware NN from $(\mathbf{x}, \mathcal{G}_X)$ to latent space \mathbf{Z}_X
 - \Rightarrow Step 2) transformation between Z_X in \mathcal{G}_X to Z_Y in \mathcal{G}_Y
 - \Rightarrow Step 3) graph-aware NN from latent space Z_Y to (y, \mathcal{G}_Y)
 - \Rightarrow Parameters jointly learned (backpropag using input-output pairs)
- Taxonomy of functions for transformation ψ_Z
 - \Rightarrow Several design decisions
 - \Rightarrow Flexible design to accommodate different scenarios
- Analogies with CCA and SSL
 - \Rightarrow Able to learn alternative informative representations
 - \Rightarrow Used for downstream tasks

伺 とう ヨ とう きょうしょう

Questions at: victor.tenorio@urjc.es

Victor M. Tenorio

Exploiting the Structure of Two Graphs via Graph Neural Networks

19 / 19

・ロト ・回ト ・ヨト ・ヨト