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» Each day huge amounts of data are generated
= Irregular structure

» Need to find new ways to

S il &

= Represent the data

= Learn from it

» Representation of irregular data

X2 x4

Q 0 = Via more complex structures — graphs
X’ » Learning over irregular data
o e = New machine learning algorithms

> Join both in graph neural networks (GNNs)

» This work: input and output are defined over different graphs
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Preliminaries of Graph Signal Processing Unversidn

Rey Juan Carlos

» A graph G: N nodes and links connecting them T l
=G =(V.EA) i o ?l
=V={L...,N},ECVxV, AcRVN T T

» Define a signal x € R" on top of the graph ? L

= x; = Signal value at node i
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Preliminaries of Graph Signal Processing Unversidn

Rey Juan Carlos

» A graph G: N nodes and links connecting them T l *
= g=(V,&A) i ? l
=V={L...,N},ECVxV, AcRVN T T

» Define a signal x € R" on top of the graph ? L
= x; = Signal value at node /

» Associated with G — graph-shift operator (GSO) S € RVXN
= S #0if and only if i = j or (i,j) € € (local structure in G)

» Graph Signal Processing — Exploit structure encoded in S to process x

» First linear processing: graph filters, graph Fourier transform...
» Then neural nets: GCNNs, GRNNs, G-Tensor, G-Autoencoders

Victor M. Tenorio
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Motivation, context and goal Uriversiad
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» Existing NN works dealing with graph signals [Brunal7]
= Input graph signal G, output scalar (class)
= Input graph signal G, output graph signal G (embeddings)
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Motivation, context and goal Uriversiad
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» Existing NN works dealing with graph signals [Brunal7]
= Input graph signal G, output scalar (class)
= Input graph signal G, output graph signal G (embeddings)

» Here, consider two signals, each defined on a different graph:

> Gx with N nodes (signal x € RV), and graph-shift operator Sx
» Gy with M nodes (signal y € RM), and graph-shift operator Sy
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Motivation, context and goal Uriversiad
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» Existing NN works dealing with graph signals [Brunal7]
= Input graph signal G, output scalar (class)
= Input graph signal G, output graph signal G (embeddings)

» Here, consider two signals, each defined on a different graph:

> Gx with N nodes (signal x € RV), and graph-shift operator Sx
» Gy with M nodes (signal y € RM), and graph-shift operator Sy

» Goal: Learn the nonlinear mapping fg : RV — RV
y= f@(x |gX; gY)

exploiting Gx and Gy and using a Neural Network (NN) architecture
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Motivation, context and goal Uriversiad

Rey Juan Carlos

» Existing NN works dealing with graph signals [Brunal7]
= Input graph signal G, output scalar (class)
= Input graph signal G, output graph signal G (embeddings)

» Here, consider two signals, each defined on a different graph:

> Gx with N nodes (signal x € RV), and graph-shift operator Sx
» Gy with M nodes (signal y € RM), and graph-shift operator Sy

» Goal: Learn the nonlinear mapping fg : RV — RV
y= f@(x |gX; gY)
exploiting Gx and Gy and using a Neural Network (NN) architecture

» Key: Consider latent space Z to transform between graphs
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Common underlying space | —
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» The underlying space Z implies that

xonGx = Zx e RN*Fex 72y — 7, e RM*f&v 7, — y on
Gx X , Lx % , Zy = yon Gy

V8, v, v8,
N M
% X Zx Zy S? i
A N M Jasey
~ go P
Gx F Fzy o T Gy
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Common underlying space |

» The underlying space Z implies that

xon Ggx = Zx € RNXFZX, Zx — Zy € RMXFZY, Zy =>yon Gy
P8y v§, Ve,
N
e
w X Zx Zy
/\\ N M
gX F FZX
» More precisely

M -~
Fgz,
= 1§, standard GNN operating over Gx
= 1, standard GNN operating over Gy

= 1§, transformation between domains: design covered later

m]
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Common underlying space |l —
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N
| x ) = [
2\ N M

M~

—

gX Fz FZX

» The input-output mapping is then

fo(X|Gx,Gy) = ¥, ov,0vg, i Y =1 (v, (1s, (X|Gx))Gy)
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Common underlying space |l —
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N M
x| o [ = 1
2\ N M /,/\\
g " o—gl
gX Fz Zx FZY Fo gY

» The input-output mapping is then
fo(XIGx,Gy) = v&, o8, 008, + ¥ = v, (48, (18, (XI9x))IGv)

» Parameters @x, Oy and (possibly) ©7
= Learned through backpropagation
= Assumption: ¢§ is differentiable
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Common underlying space |l —

Rey Juan Carlos

N M
x| o [ = 1
2\ N M /,/\\
g " o—gl
gX Fz Zx FZY Fo gY

» The input-output mapping is then
fo(XIGx,Gy) = v&, o8, 008, + ¥ = v, (48, (18, (XI9x))IGv)

» Parameters @x, Oy and (possibly) ©7
= Learned through backpropagation
= Assumption: ¢§ is differentiable

> Key in this approach: design of 1§
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> Several design decisions — taxonomy Py Mo
D zx Zy ||\
4\ N
g 4
X FZX g
FZY v
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> . . i M
Several design decisions — taxonomy e p y
. . . ) Zx Zy || 7N

» Domain specific vs agnostic to the task £ 24
= Incorporate info about the task 28 o Ey'
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Design Of ¢)éz Universidad
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> Several design decisions — taxonomy Y Mo
~ e——a<
T zx Zy || N
» Domain specific vs agnostic to the task £ y

= Incorporate info about the task Fzy

Fzy Gy
» Learnable vs fixed in advance

= Propose a parametric function with parameters @z

= O learned through gradient descent and backpropagation
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Design of ¢éz
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> Several design decisions — taxonomy il M
. - . b Zx Zy f\\?/\J

» Domain specific vs agnostic to the task £ J o
= Incorporate info about the task ox Fzy B

FZY gy
» Learnable vs fixed in advance

= Propose a parametric function with parameters @z
= O learned through gradient descent and backpropagation
» Linear vs more complex transformations

= Most general case of linear transformation

vec(Zy) = Wvec(Zx),

= With (possibly learnable) transformation W € RMFzy xNFz
= Huge number of parameters if graphs are large — overfitting
= Can incorporate structure to the transformation

= More complex can include e.g. MLP

m]
Victor M. Tenorio
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Linear structure in wéz

» Low Rank W = WyW)T<

Universidad

Rey Juan Carlos
= Wy € RM2 K and Wy € RMFaxxK

= Reduce params. from MFz, NFz, to (MFz, + NFz )K

Victor M

Tenorio
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Linear structure in wéz

» Low Rank W = WyW)T<

= Wy € RM2 K and Wy € RMFax <K

Universidad
Rey Juan Carlos
= Reduce params. from MFz, NFz, to (MFz, + NFz )K
» Kronecker Structure W = WZ QWpyn = 2Zy = WyNZxWE

= Using property vec(ABC) = (CT ® A)vec(B)
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Linear structure in wéz
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» Low Rank W = WyW)T<

= Wy € RM2 K and Wy € RMFax <K
= Reduce params. from MFz, NFz, to (MFz, + NFz )K

» Kronecker Structure W = WZ QWpyn = 2Zy = WyNZxWE

= Using property vec(ABC) = (CT ® A)vec(B)

= Wy € RM*N combines information across nodes

= Wg € RFzx*Fzy combines information across features
= Both Wy and Wg can be fixed or learned

= If both are learned, alternating fashion

Victor M. Tenorio
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Linear structure in ¢§ y—
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» Low Rank W = WyW)T<
= Wy € RM2 K and Wy € RMFax <K
= Reduce params. from MFz, NFz, to (MFz, + NFz )K

» Kronecker Structure W = WZ QWpyn = 2Zy = WyNZxWE
= Using property vec(ABC) = (CT ® A)vec(B)
= Wy € RM*N combines information across nodes
= Wg € RFzx*Fzy combines information across features
= Both Wy and Wg can be fixed or learned

= If both are learned, alternating fashion

» Permutation matrix

= Cells in Zx are rearranged to form Zy
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Examples of domain agnostic wéz

» Provide two examples that are

Universidad

= Easy to implement

Rey Juan Carlos

= Agnostic to the underlying task — applicable in any situation

Victor M. Tenorio
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Examples of domain agnostic wéz

» Provide two examples that are
= Easy to implement

= Agnostic to the underlying task — applicable in any situation

> Zy =27}
= Set Fz, =M in ’l[)gx, and Fz, = N in 1/)gy
= Example of W as a permutation matrix
= Non-learnable

= Equivalence features in node and graph signal

o =3 = DA
Victor M. Tenorio
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Examples of domain agnostic 4§ Ui

Rey Juan Carlos

» Provide two examples that are
= Easy to implement
= Agnostic to the underlying task — applicable in any situation

> Zy =27}
= Set Fz, =M in Q/ng, and Fz, = N in 1/J(§Y
= Example of W as a permutation matrix
= Non-learnable

= Equivalence features in node and graph signal

> Zy =WpZx
= Simple Kronecker structure with Wg = |
= FZX = FZy
= Wy learned through backpropagation
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Permutation equivariance of IOGNN

» Standard GNNs are permutation equivariant
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»(PX,PSPT) = Py(X,S)
= For any permutation matrix P € RVxN
» Can we say the same about IOGNN?
= Input and output are not defined on the same space

= Cannot apply same permutation to input and output

Victor M. Tenorio
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Permutation equivariance of IOGNN Universiad
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» Standard GNNs are permutation equivariant
»(PX,PSPT) = Py(X,S)

= For any permutation matrix P € RVxN
» Can we say the same about IOGNN?
= Input and output are not defined on the same space
= Cannot apply same permutation to input and output
» We can instead say

fo(PxX|PxSxPX,PySyP}) = Pyfo(X|Sx,Sy)

= Under the assumption that wéz fulfills

V6, (PxZ) = Py1§,(Z)
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Permutation equivariance of IOGNN

» Standard GNNs are permutation equivariant

Universidad
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Y(PX,PSPT) = Py(X,S)
= For any permutation matrix P € RVxN
» Can we say the same about IOGNN?

» We can instead say

= Input and output are not defined on the same space
= Cannot apply same permutation to input and output

fo(PxX|PxSxPx,PySyP}) = Pyfo(X|Sx,Sy)
= Under the assumption that wé fulfills

V8,(PxZ) = Pyy§,(Z)
Victor M. Tenorio

» As an example, consider the transformation Zy = WyZx

= Rearrange weight matrix as W), = PyV\DI,\,PT)é}_l
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Numerical Results - Subgraph Feature Estimation py unrsas

Rey Juan Carlos

» From a graph G we sample two subgraphs Gx and Gy
= G is the Cora graph
= Mapping from node features in Gx to labels in Gy

’/0—/_'
30 ’//0\%
H »,/—" - - "
Q -~ 7
2 - 7
g% - ~. -
= — ~ % R -
g _ S, v .
27 - /’ -
o -
8, -~ —— IOGCN-W
o™ 7 —v— IOMLP-W
y ﬁ e —e- JIOGCN-T
%’“ s —s= JOGCN-C
2 ra % —v— IOMLP-C
20 s —e— GON
/74 —+— GCN-Limited-%x
10 - ~+— GCN-Limited-%y
= —e— GCN-Limited-%yy
4 5
Number of neighbors
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Numerical Results - Image Interpolation

» Framework suited for the interpolation task

= Gx is a coarse/subgraph of Gy
» Image interpolation

Universidad
Rey Juan Carlos

= Interpolation from signal in coarse Gx to fine Gy

= Superpixels + Region Adjacency Graph

Victor M

Tenorio
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Numerical Results - Image Interpolation —

Rey Juan Carlos

» Framework suited for the interpolation task

= Gx is a coarse/subgraph of Gy

= Interpolation from signal in coarse Gx to fine Gy
» Image interpolation

= Superpixels + Region Adjacency Graph

(a) RAG ¢x (b) Mean X (c) RAG Gy

(f) CNN (9) KNN
ﬂ
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Numerical Results - Image Interpolation —

Rey Juan Carlos

» Framework suited for the interpolation task

= Gx is a coarse/subgraph of Gy

= Interpolation from signal in coarse Gx to fine Gy
» Image interpolation

= Superpixels + Region Adjacency Graph

—
A
- S — 2 \H"
4
= =¥
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£ =
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= e
S 102
ig) 10 <
S
g
45
g —e— IOGCN-W
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—e— IOMLP-W
—— IOMLP-S
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Numerical Results - Fluid Flow Prediction e
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» Interpolation in the field of CFD
= Solved via Navier-Stokes PDE on meshes
= Fine meshes are computationally costly

» Fully supervised setting

Interpolation | Generalization
CFD-GCN* 1,8e-02 5,4e-02
GC N * 1 '4e_02 9’ 56-02 Ground Truth IOGCN Prediction
IOGCN-W 6,7¢-03 4.1e-02 N N
IOGCN-S 1,7e-02 3,7e-02 w —
I0GAT-W 8,7e-03 6,6e-02
I0GAT-S 8,3e-03 6,2e-02 j L
IOMLP-W 8,4e-03 4,0e-02
GAT 1,1e-02 1,1e-01

DA

)
I
i

!
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» Canonical Correlation Analysis (CCA)

Connections with CCA and SSL - Previous work
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= Given two views of data X € RV*Fx and Y € RV*Fr

= Seek maximal correlation in transformed space
max tr(UTZxyV
na (U ZxyV)

= Compute transformations U € RF**Fz and V € RFy*Fz
s. to: UTExxU=VTEWV =1,

Victor M

Tenorio
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Connections with CCA and SSL - Previous work U s
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» Canonical Correlation Analysis (CCA)
= Given two views of data X € RV*Fx and Y € RNV*Fv
= Compute transformations U € RF**Fz and V € RFr*Fz
= Seek maximal correlation in transformed space

T
max tr(U" ZxyV)

s. to: UTExxU=VTEWV =1,
» Deep setting: Deep CCA

T
en;’agy tr (f@X(X) f@Y(Y))

s. to: fo, (X) fa, (X) = fo, (Y) fo,(Y) =1
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» Canonical Correlation Analysis (CCA)

Connections with CCA and SSL - Previous work u
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= Given two views of data X € RV*Fx and Y € RV*Fr

= Seek maximal correlation in transformed space
max tr(UTZxyV
na (U ZxyV)

= Compute transformations U € RF**Fz and V € RFr*Fz

» Deep setting: Deep CCA

s. to: UTExxU=VTEWV =1,

max tr (fox (X) T fa, (Y))

Victor M. Tenorio

s. to: fo, (X) fa, (X) = fo, (Y) fo,(Y) =1
= Slight different reformulation (CCA-SSG)

Exploiting the Structure of Two Graphs via Graph
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min fo (X) — fo, (V)| + A (Lso(fox (X)) + Lsou(foy ()




Connections with CCA and SSL

» We can apply our architecture to the CCA setting

= Now we know both X and Y

Universidad
Rey Juan Carlos
= Goal: find alternative representations Zx and Zy
M
N man

%; X Ve ZfX corr |l 7 C%{?(I

/ N 73

\\ Pa— M M| \/\ [ @
g F; Fz — —
X * FZY FZY F, gy
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Connections with CCA and SSL
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» We can apply our architecture to the CCA setting
= Now we know both X and Y

Rey Juan Carlos

N

= Goal: find alternative representations Zx and Zy

%d_fy X@ Zx
a g

M
max p ®
7' ‘corrJ Zy @ %
N
s M M‘ 6
g F; Fy —
X X Fro 7. I Gy
> Aim to solve
max
Xy

(8, (Ve (X19x)) e, (YIGv))

s. to: 1§, (18, (X|0x))T18,, (v, (X|0x)) =
Yo, N (YIGy)Tug T (YIGy) =1

Exploiting the Structure of Two Graphs via Graph
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Numerical Results - Self-Supervised Learning iversidd
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» Problem setting
= G is a common graph with two views
= Gx edges dropped, features masked
= Gy subgraph with perfect information
» Perform node classification via transformed views
= SSL setting

orl T

4
>

— Cora-IOGCN
»— Cora-IOMLP
— Cora-CCA-SS!
-
-

4
o

L1111l

Citeseer-I0OGC]
Citeseer-IOML
Citeseer-CCA

I
P

Accuracy over the test node set

- ——t

I
w

—_—————

02 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of edges dropped / features masked

i
!
N
o
P
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» Novel NN architecture to learn mapping from (x,Gx) to (y,Gy)

» Key idea: latent common space and two graph-aware NN
= Step 1) graph-aware NN from (x, Gx) to latent space Zx
= Step 2) transformation between Zx in Gx to Zy in Gy
= Step 3) graph-aware NN from latent space Zy to (y,Gy)

= Parameters jointly learned (backpropag using input-output pairs)

[m] [l = =
Victor M. Tenorio
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» Novel NN architecture to learn mapping from (x,Gx) to (y,Gy)

» Key idea: latent common space and two graph-aware NN
= Step 1) graph-aware NN from (x, Gx) to latent space Zx
= Step 2) transformation between Zx in Gx to Zy in Gy
= Step 3) graph-aware NN from latent space Zy to (y,Gy)
= Parameters jointly learned (backpropag using input-output pairs)

» Taxonomy of functions for transformation 1z
= Several design decisions

= Flexible design to accommodate different scenarios
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Closing remarks Unversiad
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» Novel NN architecture to learn mapping from (x,Gx) to (y,Gy)

» Key idea: latent common space and two graph-aware NN
= Step 1) graph-aware NN from (x, Gx) to latent space Zx
= Step 2) transformation between Zx in Gx to Zy in Gy
= Step 3) graph-aware NN from latent space Zy to (y,Gy)
= Parameters jointly learned (backpropag using input-output pairs)

» Taxonomy of functions for transformation 1z
= Several design decisions
= Flexible design to accommodate different scenarios

» Analogies with CCA and SSL
= Able to learn alternative informative representations
= Used for downstream tasks
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Questions at: victor.tenorio@urjc.es
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