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What 1s chemical process?

Chemical process

Raw material

Figure: https://cen.acs.org/business/finance/CENs-top-50-US-chemical-producers-for-2020/99/i17
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What 1s chemical process design

Unit operation
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Current process design methods
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- Can we leverage ML in process design?
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Reinforcement learning shows super-human performance
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- Can we use reinforcement learning in process design?

1
2
3
4

Figure 1: Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484—-489 (2016). https://doi.org/10.1038/nature16961

Figure 2: https://analyticsindiamag.com/this-ai-agent-uses-reinforcement-learning-to-self-drive-in-a-video-game/ )

Figure 3: Zhou, Z., Kearnes, S., LI, L. et al. Optimization of Molecules via Deep Reinforcement Learning. Sci Rep 9, 10752 (2019). https://doi.org/10.1038/s41598-019-47148-x ) )

Figure 4: Spielberg, S., Tuisyan, A., Lawrence, N. P., Loewen, P. D., & Gopaluni, R. B. (2020). Deep reinforcement learning for process control: A primer for beginners. arXiv preprint arXiv:2004.05490.
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What is reinforcement learning?

| Action a = n(7,s) 1

Environment

Agent

Reward r = E(s) SIEUSD

policy “ l
state s’

4 Observation of the state s |

[1] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018
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Reinforcement learning for process design

,
sl

Action 1

1. Select an open stream
A t 2. Add a new unit operation )
gen 3. Select design/operation Environment
variables Flowsheet simulator
Neural networks
Reward =
4 State |

>—— (N — Stream table

[1] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018
[2] Gao, Q., & Schweidtmann, A. M. (2024). Deep reinforcement learning for process design: Review and perspective. Current Opinion in Chemical Engineering, 44, 101012.
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Three components in RL framework

Information Agent Action
representation architecture space
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Three components in RL framework
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Information representation: Flowsheet graph

hex

col

prod

raw hex

C>—0— 7 —)——> |fiash

hex

b

prod

[1] Geéttl, Q., Grimm, D., & Burger, J. (2021). Automated Process Synthesis Using Reinforcement Learning. In Computer Aided Chemical Engineering (Vol. 50, pp. 209-214). Elsevier

[2] Sto ., Leenhouts, R., Gao, Q., & Schweidtmann, A. M. (2023). Flowsheet generation through hierarchical reinforcement learning and graph neural networks. AIChE Journal, 69(1), e17938.
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Three components in RL framework
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Actor-critic agent structure
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Three components in RL framework
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Hierarchical hybrid action space

Action level 1:
Select an open stream
(discrete)
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Actor-critic agent structure
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Case study

® We use a simple reaction, and for the purpose of illustration, we are assuming ideal mixing behavior.

A+B =C+D

= Feed initialization: 100 mol/s molar flow, 300 K temperature, equimolar mixture of A and B
* DWSIM environment

® Unit operations and design variables
= Reactor: Length [ (0.1m — 20m)
= Column: Distillate to feed ratio D/F (0.05 - 0.95)
= Heat exchanger. Water temperature T (278.15K - 326.95K)
= Recycle: Recycled ratio r (0.1 — 0.9)

® Reward: Net cash flow

reward = Z Pyroduct — Preed — 2(1 + O)uynit — Crixed

[1] Cuncun Zuo, Langsheng Pan, Shasha Cao, Chunshan Li, and Suojiang Zhang Industrial & Engineering Chemistry Research 2014 53 (26), 10540-10548 DOI: 10.1021/ie500371c
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Learning curve of agent

® There are in total 3 parallel runs

801 ® Each run contains 10,000 episodes

® Each episode generate a complete
flowsheet

60 1

® 10,000 training episodes need 72 hours
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Learning curve of agent
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Learning curve of agent
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Learning curve of agent
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Limitation: Long simulation time

® 10,000 training episodes need 72 hours
® Can we accelerate the training process?
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Limitation: Long simulation time

® 10,000 training episodes need 72 hours
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Transfer learning in RL for process synthesis

® Faster feasibility

— e = The agent with transfer learning can
80- —— Without transfer learning generate feasible flowsheet even in the
, first episode

® Improved performance

= The agent with transfer learning reaches
even higher convergence score

® Efficiency boost

= Using score of 60 as reference, the
agent with transfer learning decreases
0 2000 4000 6000 8000 10000 by 40% trammg epISOdeS

Eposide

[1]Gao, Q., Yang, H., Shanbhag, S. M., & Schweidtmann, A. M. (2023). Transfer learning for process design with reinforcement learning. In Computer Aided Chemical Engineering (Vol. 52, pp.
2005-2010). Elsevier.
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Conclusion

® We propose a reinforcement learning algorithm that

represents flowsheets as uses graph neural can synthesize new
graphs networks to learn processes

- Reinforcement learning provides new possibility for process design
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Thank you very much for your attention!

Paper link: https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.17938
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