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What 1s a graph shift operator?

A matrix S which represents the structure of a graph

A matrix S € R"*" is called a Graph Shift Operator (GSO) if it satisfies:
Sij =0 fori#jand (i,j) ¢ E.
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GSOs for GNN

Adjacency matrix: A

D-A

Laplacian matrix: L
Normalized Adjacency matrix: DI2AD-11Z2 *
Symmetric normalized Laplacian matrix: I, — D2 AD"1\?

Random walk normalized Laplacian: [I,-D1A

n

* Semi supervised classification with graph convolution networks, Kipf and Welling, 2016
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Basics of GNN

General graph convolutional layer

X = & [§ :s“x’wﬁ,]
k=0

where:
k : number of hops
I - layer number
X : graph feature
S : GSO
W : learnable model weight

O
Linear graph filter : Z = thSkX
k=0
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Message Passing Graph Neural Network

Three Steps:
Message Construction
Message Aggregation
Message Update

xX; = v (X Djen(iy P(Xi, X;, €ji))

where:
¢ : message construction function (e.g., MLP)
@ : message aggregation function (e.g., sum)
~ : message update function (e.g., MLP)
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GNN for Power System Analysis

IEEE 9 bus network Graph equivalent *
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* PoweflowNet: Powerflow approximation using message passing GNN, N.Lin et al, 2024
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Best GSO?

“No one matrix is the best because each matrix has its limitations in that there is
some property which the matrix cannot always determine” *

- We should choose a matrix that best fits the properties we need

- We are interested in stability of GNNs to topological variations in power
systems

* Spectral Graph Theory, Butler and Chung, 2013
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GNN Stability

- We are interested in perturbation of the power network graph due to random
loss of an edge (N-1 contingency)

- If there is a perturbation of the S matrix, how stable is the graph filter?
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Lipschitz filters

Standard Lipschitz Filter:

lh(A2) — h(M)] = ClAz — Aq|

Frequency response is at most linear

Integral Lipschitz Filter:

(AR (A =C

Frequency response at large X is flat
Stable to stochastic graph perturbations

* Stability properties of Graph Neural Networks, F.Gama et al, 2020
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Theoretical Insight

Expected c;i_ifference between GCN output on a graph § and its
subgraph S is:

E [[|o(x, S, H) — ®(x,3,H)|3| < c(-p)

Ix[|Z + O((1 — p)?)
where:
C is a constant dependent on GSO choice

* Stability of Graph Convolution Neural Networks to Stochastic Perturbation, Z.Gao et al, 2021
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Theoretical Insight

Filter His learnt (W) in the case of GNN, not exp
C can be made smaller by learning a more stab

icIt
efl

We can use power system physics to bias learning
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GSO for power system

Consider two GSOs with the following frequency spectrum:

S1: Linear eigenvalue decay
A~ —fBi+c
S, Exponential eigenvalue decay

.:’i.j = E_m.
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GSO 1 — Linear Decay

Properties of GSO with A; = —fi + ¢:
Rate of change between consecutive eigenvalues:

Ai — A = B

Harder to satisfy integral Lipschitz condition
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GSO 2 — Exponential Decay

Properties of GSO with \; ~ e~
Rate of change between consecutive eigenvalues:

i — A = e (1 —e )

Rapid decay of high frequencies

May more naturally satisfy integral Lipschitz condition with
smaller C
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Comparing the spectrum of different GSOs (IEEE 39)

Power network
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Comparing the spectrum of different GSOs (IEEE 300)
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Comparing the spectrum of different GSOs (IEEE 1354)
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Case study

Research Question: Is the physics based GSO more stable to N-1 line
contingencies when predicting ACOPF solutions?

ACOPF

- Predict generator power injections (real and reactive)
- Predict voltages at the bus (magnitude and angle)

« Voltage output is topology dependent and exhibit strong locality property *

* Topology aware GNN for learning feasible and adaptive ACOPF Solutions, S.Liu et al, 2023
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Dependence of voltage on B

From fast decoupled power flow equations:

A6 = [B']'AP
AV = [B"17AQ
where:

B’ and B"” are modified susceptance matrices
Hence we can consider B as the underlying GSO
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Case study

Large scale ACOPF Dataset recently released by Deepmind *
We consider the medium sized IEEE 118 bus grid

« Vanilla fully connected neural network
- Message passing GNN with normalized adjacency matrix

- Message passing GNN with B-matrix as the GSO

* OPFData: Large scale dataset for ACOPF solutions with topological perturbation, S.Lovett et al, 2024
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Results

All results in three settings (A,B,C)
Scalability of FNN to large grids challenging (1.2M parameters)

Train — Test setting MSE

Full — Full topology 4.0e-3 - 3.7e-3
N-1 — N-1 topology 2.0e-3 - 2.4e-3
Full — N-1 topology 4.0e-3 - 6.4e-3
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Results

« GNN requires only a fraction of the model complexity to achieve similar accuracy
(86K parameters)

- More scalable to large grids
« GNN with normalized A matrix as GSO

Train — Test setting MSE

Full — Full topology 3.0e-3 - 2.6e-3
N-1 — N-1 topology 4.0e-3 - 4.0e-3
Full — N-1 topology 3.0e-3 - 5.6e-3
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Results

« GNN with B matrix as GSO

- Number of parameters is independent of the graph

- Combination of Message passing with Graph convolution

Train — Test setting MSE

Full — Full topology 3.0e-3 2.6e-3
N-1 — N-1 topology 4.0e-3 4.0e-3
Full — N-1 topology 3.0e-3 3.4e-3
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Results

Model Accuracy Model Parameters
A 107 5
ma B
6 C
10°
&
‘- 3
; 2
2 P
B = 10° 7
s3 %
=
£
=2
=
24
109 4
b 103 -
FNN GNN4GSOL GNN+GS02 FNN GNN4+GSO1 GNN+GSO2

%
TUDelft




Conclusions

« GNNs may be used to learn fast approximate ACOPF solutions
- The choice of GSO may affect stability of GNNs to perturbations

« The use of physics informed GSO may improve stability of GNN to topological

perturbations
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Thank you for your attention
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