

Scalable Reinforcement Learning for Large-Scale Coordination of Electric Vehicles

Stavros Orfanoudakis, Pedro Vergara Delft, 7-11-2024

Projected EV Number

What happens to the electricity grid with many thousand EVs?

Huge Energy Demand Peaks!

TUDelft

The Solution

Source of Uncertainty

How long is the EV staying

Communication with DSO?

connected? What is the type of EV and the state of charge?

[1] https://ev.caltech.edu/info

Simulation

https://github.com/StavrosOrf/EVsSimulator

Time step: 5 / 96 2022-10-13 06:15:00 Scenario: public_PowerSetpointTracking Simulation Name: ev_city_96_2024-01-09_21-28-08-110206_replay

Modeling the problem

Reinterpreting EV charging

a. Graph Problem Structure

EV-GNN Architecture

Optimality Gap as a function of RL algorithm and experiment scale

Sample Efficiency

SAC	→ SAC GNN-FX	SAC EV-GNN
─ TD3	TD3 GNN-FX	→ TD3 EV-GNN

Invalid actions

Generalization

(a)

Wide applicability

Multi-Discrete Action Spaces

Multi-Objective EV charging problems

Conclusions

• Scalable Solution for Large-Scale Charging

- Addresses traditional methods' limitations
- Efficient, graph-based architecture for large, complex systems
- Practical for CPOs managing thousands of EVs daily

• Improved Scalability & Generalization

- Outperforms traditional RL in adapting to new environments
- Filters irrelevant data, leveraging graph symmetries

• Versatile Across Control Domains

- Adapts to continuous and discrete RL (e.g., TD3)
- Robust in V2G profit maximization scenarios
- Promising Future Directions
 - Apply to dynamic tasks (e.g., vehicle routing, portfolio optimization)
 - Potential for Safe RL integration to enhance constraint satisfaction

Thank you!

s.orfanoudakis@tudelft.nl