APPROXIMATIONS FOR KEMENY'S CONSTANT FOR SEVERAL FAMILIES OF GRAPHS AND REAL-WORLD NETWORKS

Robert Kooij 5 December 2024

Graphs&Data@TUDelft

Joint work with **Johan Dubbeldam (DIAM)**

1

Introduction

- Faculty: EEMCS
- Department: Quantum & Computer Engineering
- Section: Network Architectures & Services
- Quantify robustness of a network
 - use network metrics

S. Freitas, D. Yang, S. Kumar, H. Tong and D. H. Chau, "Graph Vulnerability and Robustness: A Survey," in *IEEE Transactions on Knowledge and Data Engineering*, doi: 10.1109/TKDE.**2022**.3163672.

• 151 references, including 7 papers from NAS

Aim of this talk: discuss Kemeny's Constant

John George Kemeny

- János György Kemény (1926 1992)
- Joined Manhattan Project aged 18!
- Invented BASIC programming language

What is Kemeny's Constant?

- Undirected graphs
- Random walks

What is Kemeny's Constant?

- Undirected graphs
- Random walks

Pr(1→3) = 1/3

- $Pr(1 \rightarrow 4) = 1/3$ $Pr(1 \rightarrow 5) = 1/3$
- Mean first passage time

$$\mathbf{m}_{13} = 1 \cdot \frac{1}{3} + 3 \cdot \frac{2}{3} \cdot \frac{1}{3} + 5 \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} + \dots = 5$$

 Kemeny's Constant = mean first passage time from a given node to a "randomly" chosen other node

Applications

• Efficient testing for COVID in communities

TUDelft

Background

• Joint work with Johan Dubbeldam (EEMCS/DIAM)

Discrete Applied Mathematics 285 (2020) 96–107

• Maria Predari

Background

- A: adjacency matrix of graph G(N,L)
- Δ : diagonal degree matrix

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad \qquad \Delta = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- P: transition probability matrix $P = \Delta^{-1}A$

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 1/3 & 1/3 & 0 & 1/3 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad \qquad \pi = \begin{pmatrix} 1/5 \\ 1/5 \\ 3/10 \\ 1/5 \\ 1/10 \end{pmatrix}$$

• π : steady state probability vector $\pi^T P = \pi^T$

• Q: Laplacian matrix $Q = \Delta - A$

$$Q = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

Background

• eigenvalues: $o = \mu_N \leq \mu_{N-1} \leq \cdots \leq \mu_1$

• Q[†]: Moore-Penrose pseudo inverse of Laplacian

$$Q^{\dagger} = (Q + \frac{J}{N})^{-1} - \frac{J}{N}$$

Background

• R_G: effective graph resistance

Effective resistance between two nodes

Considers all paths between the nodes

 $R_G = N \sum_{i=1}^{N-1} \frac{1}{\mu_i}$

R_G: Sum of all effective resistances

Background

$$K(P) = \sum_{i=1}^{N} \pi_i m_{ji} - 1$$

$$K(P) = \sum_{k=2}^{N} \frac{1}{1 - \lambda_k}$$

 $\mathbf{m}_{ji}:$ mean first passage time

$$\lambda_{ extsf{k}}$$
: eigenvalues of $\Delta^{-1/2}A\Delta^{-1/2}$

$$K(P) = \zeta^T d - \frac{d^T Q^{\dagger} d}{2L}$$

ζ: vector with diagonal elements Q[†]d: degree vector

Wang, Dubbeldam, Van Mieghem (LAA;2017)

Overview

- Complete bi-partite graphs and some trees
- Windmill graphs
- Relation with effective graph resistance
- A sharp upper bound
- Real-world networks
- A class of biregular graphs
- Analysis for large networks
- Future work
- Wrap-up

Complete bi-partite graphs and some trees

 K_{N_1,N_2}

Using random walks and probabilities

$$K(P) = N_1 + N_2 - \frac{3}{2}$$

Complete bi-partite graphs and some trees

- Introduced by Estrada (2016)
 - η cliques of order k
 - · connected through central node

• $N \rightarrow \infty$

TUDelft

• clustering coefficient \rightarrow 1 while transitivity index \rightarrow 0

Linear Algebra and its Applications 565 (2019) 25–46 $\,$

On generalized windmill graphs

Robert Kooij $^{\mathrm{a,b,*}}$

TUDelft

- Generalized windmill graph: $W'(\eta, k, l)$
 - η cliques of order k
 - connected through central clique of order I

• Application: Public Transport Networks

Representation in P-space

- Prof. Oded Cats
- Fac. CiTG

- K(P) for W'(η ,k,l) using spectrum of $\Delta^{-1/2}A\Delta^{-1/2}$

spectrum:
$$\{(-\frac{1}{k+l-1})^{\eta(k-1)}, (\frac{k-1}{k+l-1})^{\eta-1}, (-\frac{1}{\eta k+l-1})^{l-1}, (\frac{l-1}{\eta k+l-1})^{l-1}, (\frac{l-1}{\eta k+l-1})^{l-1}, (\frac{l-1}{\eta k+l-1})^{l-1}, (1)^{l-1}\}$$

W'(
$$\eta, k, l$$
) $K(P) = \frac{\eta(k-1)(k+l-1)}{k+l} + \frac{(\eta-1)(k+l-1)}{l} + \frac{(l-1)(\eta k+l-1)}{\eta k+l} + \frac{(\eta k+l-1)(k+l-1)}{\eta k(k+l-1)+l(\eta k+l-1)}.$

Special case: | = 1; windmill graph W(ŋ,k)

$$K(P) = \frac{k^2(2\eta - 1)}{k+1}$$

- Palacios (2010)
 - r-regular graphs on N nodes

$$K(P) = \frac{r}{N}R_G$$

- Approximation for non-regular graphs
 - Average degree D
 - Heterogeneity index H

$$K^*(P) = \frac{D}{N}R_G + Hf(N, L)$$

• Choose f(N,L) such that $K^{*}(P)$ is exact for $K_{N_{1},N_{2}}$

$$D = \frac{2L}{N}$$
$$H = \frac{1}{N} \sum_{i=1}^{N} (d_i - D)^2$$

• for
$$K_{N_1,N_2}$$
 $K(P) = N_1 + N_2 - \frac{3}{2}$

$$D = \frac{2N_1N_2}{N_1 + N_2} \qquad H = \frac{N_1N_2(N_1 - N_2)^2}{(N_1 + N_2)^2} \qquad R_G = (N_1 + N_2)(\frac{N_2 - 1}{N_1} + \frac{N_1 - 1}{N_2} + \frac{1}{N_1 + N_2})$$

$$f = \frac{1 - 2N_1 - 2N_2}{2N_1 N_2}$$

• for
$$K_{N_1,N_2}$$
 $N = N_1 + N_2$
 $L = N_1N_2$ $f(N,L) = \frac{1-2N}{2L}$

$$K^*(P) = \frac{2L}{N^2}R_G + H\frac{1-2N}{2L}$$

- Exact for regular graphs
- Exact for complete bipartite graphs
- Also exact for windmill graphs!

Table 1

Kemeny's constant and its approximations K^* for several graphs.

			N7372	
Graph	N	L	K(P)	$K^*(P)$
K _{10,15}	25	150	23.50	23.50
P ₁₀	10	9	27.17	29.53
D_{10}	10	9	25.61	28.06
$E_{10,2}$	10	9	24.50	27.16
W(3, 10)	31	165	45.45	45.45
W'(3, 10, 5)	35	295	35.49	33.77

A sharp upper bound

• K*(P) is not an upper bound

$$K(P) = \zeta^T d - \frac{d^T Q^{\dagger} d}{2L} \leq \zeta^T d - \frac{H}{D\mu_1} \equiv K_U(P)$$

Wang, Dubbeldam, Van Mieghem (LAA;2017)

A sharp upper bound

Table 2

Kemeny's constant and the upper bound $K_U(P)$, for several graphs.

-		
Graph	K(P)	$K_U(P)$
<i>K</i> _{10,15}	23.50	23.50
<i>P</i> ₁₀	27.17	27.28
D ₁₀	25.61	25.71
<i>E</i> _{10,2}	24.50	24.61
W(3, 10)	45.45	45.45
W'(3, 10, 5)	35.49	35.49

• $K_{\cup}(P)$ is tight for (generalized) windmill graphs

Real-world networks

• Data from Internet Topology Zoo

• 243 communication networks

Real-world networks

Table 3

Kemeny's constant, the approximations K^* and the upper bound K_U , for the smallest and largest networks in the Internet Topology Zoo.

Graph	Ν	L	K(P)	<i>K</i> *	K _U
Arpanet196912	4	4	2.54	2.73	2.60
Renam	5	4	3.50	3.50	3.50
Mren	6	5	4.50	4.50	4.50
UsCarrier	158	189	1175.99	1265.48	1176.68
Cogentco	197	245	1082.45	1197.24	1083.35
Kdl	754	899	5907.29	6264.78	5908.32

Real-world networks

Table 4

Statistics for the absolute value of the relative errors for the approximations K^* and the upper bound K_U , for 243 real-world networks.

Metric	<i>K</i> *	K _U
Average absolute rel. error	27.25%	0.73%
Maximum absolute rel. error	122.60%	8.05%

*f***U**Delft

Theorem: $K_{\cup}(P)$ is tight for this class of biregular graphs

Proof: exploit properties of eigenvalues and eigenvectors of Q

Further exploration of an upper bound for Kemeny's Constant

Robert E. Kooij^{a,b}, Johan L.A. Dubbeldam^a, Maria Predari^c

- Properties of our class of graphs
 - Biregular
 - Diameter = 2

- Not sufficient for $K_{\boldsymbol{U}}$ to be tight

K = 9.766 K_U = 9.774

E. Angriman et al. Approximation of the diagonal of a Laplacian's pseudoinverse for complex network analysis, in: ESA, Vol. 173 of LIPIcs, 2020, pp. 6:1-6:24.

- Fast approximation of diagonal elements of Q^+
- \bullet Errors due to sampling parameter ϵ

Graph	Type	ID	V	E]	
inf-power	infrastructure	inf	4K	6K		
facebook-ego-combined	social	fac	4K	$8.8 \mathrm{K}$		
p2p-Gnutella04	$\operatorname{internet}$	p2p	10K	39K		
ca-HepPh	collaboration	ca-	11K	117K		• -
arxiv-astro-ph	collaboration	arx	17K	196K		medium
eat	words	eat	23K	297K		
arenas-pgp	in frastructure	are	24K	10K		
as-caida20071105	$\operatorname{internet}$	as-	26K	53K		
ia-email-EU	$\operatorname{communication}$	ia-	32K	54.4K		
loc-brightkite	social	lob	57K	213K	1	
soc-Slashdot0902	social	SOC	82K	504K		
flickr	images	fli	106K	2.31M		•
livemocha	social	liv	104K	2.19M		larae
loc-gowalla-edges	social	log	196K	950K		
web-NotreDame	web	web	325K	1.09M		
citeseer	citation	cit	365K	1.72M		

Results for medium graphs

3	Average Rel. Error	Average Speed Up
0.1	0.33%	2
0.3	0.27%	18
0.5	0.25%	48
0.9	1.26%	141

Results for large graphs

Graph	$K_U(P)$	Time (in sec)
lob	80,903	48.83
SOC	$96,\!102$	50.87
fli	$122,\!185$	98.11
liv	$120,\!525$	37.07
log	$271,\!577$	310.77
web	$1,\!009,\!760$	$4,\!279.36$
cit	$508,\!244$	$4,\!571.51$

Future work

- Use K as proxy for network robustness
- Use K as indicator for detecting anomalies in bank transaction networks
- Define quantum Kemeny's constant

Wrap-up

- Explicit expressions for K for some graph families
- Approximation using effective graph resistance
- Sharp upper bound
- Validation on real-world networks
- New class of graphs for which upper bound is sharp
- Analysis of some large networks

Thanks for your attention!

<u>r.e.kooij@tudelft.nl</u>

