Diffusion Backbones of Temporal Higher-order Networks

Shilun Zhang, Alberto Ceria, Huijuan Wang Multimedia Computing Group, Intelligent Systems TU Delft

Dec 5, 2024

Temporal higher-order network (THN) (Temporal hypergraph)

H(N, E)(A) 2 $(\hat{\mathbb{D}})$ ⓓ (3)(1)(3)THN (5)(5)(4) t_2 t_3 t_1 $\mathcal{H}(N, \mathcal{E})$ t_A 3) 3 3 2 \bigcirc 1 2 (3)(1)(5)(5)(5) t_{5} t_7 t_{R}

Temporal higher-order network (THN) (Temporal hypergraph)

(A) H(N, 8) (Ĵ) $^{(1)}$ (3)1 (1)THN (5)(4) t_2 t_3 t_1 $\mathcal{H}(N, \mathcal{E})$ t_A 3 3 3 ⓓ 2 (3)(1(1)(4)(5)(5)(5) t_5 t_7 t_{R} (B) H(N, E) w_i : the number of Time-aggregated network 3 activations of h_i H(N,E)in $\mathcal{H}(N, \mathcal{E})$

Contagion process on THNs

- Susceptible-Infected threshold process:
 - At t_0 a single seed node gets infected;
 - When a hyperlink is active at any time t,

if the number of infected nodes within the hyperlink $\geq \Theta$, each susceptible node in the hyperlink gets infected independently with probability β at time t + 1.

G. de Arruda, G. Petri, and Y. Moreno, Social contagion models on hypergraphs, Phys. Rev. Research 2, 023032 (2023).

Example – seed: node 1

Threshold $\Theta = 1$, $\beta = 1$

Example – seed: node 1

Threshold $\Theta = d - 1$, $\beta = 1$

Research question

- Which hyperlinks contribute more to the diffusion process?
 - Definition: contribution of each hyperlink

the number of nodes that are infected directly via the hyperlink

- Correlation with properties of the hyperlink within the THN

Construction of diffusion backbone

Construction of diffusion backbone

 w_j^B : the average number of nodes that are infected directly via hyperlink h_j .

Construction of diffusion backbone

Datasets

• 8 empirical datasets of face-to-face interactions

http://www.sociopatterns.org/datasets/

Backbone $B(\beta \rightarrow 0)$

For an arbitrary hyperlink h_j

• $\Theta = 1$

$$w_j^B \approx \beta |h_j| (|h_j| - 1) w_j / N,$$

•
$$\Theta = d - 1$$

 $w_j^B \approx \begin{cases} \beta \frac{|h_j|(|h_j|-1)w_j}{N}, & |h_j|=2\\ \mathcal{O}(\beta^2), & |h_j|=3 \end{cases}$

 w_i^B is the weight in the backbone B,

 w_i is the weight in the time-aggregated network H.

Backbone *B* **as** β **increases**

Centrality metrics for hyperlinks based on local network

Т

Static
$$\xi_j^{sub}(\alpha) = w_j \left(1 + \sum_{l \in \mathcal{L}^{sub}(j)} w_l\right)^{\alpha}$$
,

Temporal
$$\Xi_j^{sub}(\alpha) = \sum_{t=1}^T x_j(t) \left(1 + \sum_{l \in \mathcal{L}^{sub}(j)} \sum_{s < t} x_l(s)\right)^{\alpha}$$
,

where α is the scaling parameter,

$$x_j(t)$$
 indicates if h_j is active at t , $w_j = \sum_{t=1}^{1} x_j(t)$,

Correlation analysis

Conclusion

- Diffusion backbone characterizes the contribution of each hyperlink,
- The backbone in the limiting case $\beta \rightarrow 0$,
- Local centrality metrics for hyperlinks in THNs.

Thanks!