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Networked Control Systems are Scaling up

Smart sensor networks

Smart grids

Vehicular networks Smart agriculture
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A Classic Tradeoff: Performance vs. Resources
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Example: Distributed Control

Really need to use all sensors/links?
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Controller Architecture: How to Choose?
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Centralized-Decentralized Trade-off

Assumption

Communication delays increase with number of links
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Setup: Consensus in Undirected Network

Agent i with state (error) xi

➔ feedback from n neighbors

➔ communication delay τn ↑ n

➔ symmetric feedback gains k1, . . . , kn

Continuous-time single integrator ➔ dx(t) = −Kx(t − τn)dt + dw(t)

To be
designed
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Setup: Example with Circulant Topology

n = 2 pairs of neighbors

k1

k2

k1

k2
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Decoupling the Dynamics

dx(t) = −Kx(t − τn)dt + dw(t)

Change of basis ➔ dx̃j(t) = −λj x̃j(t − τn)dt + dw̃j(t) j = 1, . . . ,N

Steady-state variance1: σ2
ss(λj) =

1 + sin(λjτn)

2λj cos(λjτn)
λj ∈

(
0,

π

2τn

)

1U. Küchler and B. Mensch, “Langevins stochastic differential equation extended by a time-delayed term”
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Optimal Mean-Square Consensus

Problem

Choose the feedback gains that minimize the steady-state variance:

argmin
K

E
[
lim
t→∞

∥x(t)∥2
]

Equivalently: argmin
K

N∑
λj=2

σ2
ss(λj) convex problem
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Circular Formation: Decentralized-Centralized Trade-off

τn constant

τn ∝ n

τn ∝
√
n
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Extensions to More Realistic Dynamics
M
or
e
re
al
is
ti
c

dxi (t) = uP,i (t)dt + dwi (t)

dxi (t) = zi (t)dt
dzi (t) = η(−zi (t) + uP,i (t))dt + dwi (t)

Inertia

xi (k + 1) = xi (k) + uP,i (k) + wi (k)

Wireless
communication

xi (k + 1) = xi (k) + zi (k)
zi (k + 1) = zi (k) + η(−zi (k) + uP,i (k)) + wi (k)
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Extensions to Undirected Network

Network topology τn ∝ n

L. Ballotta, M. R. Jovanović, L. Schenato, “Can Decentralized Control Outperform Centralized? The Role of
Communication Latency,” IEEE TCNS 2023
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Deterministic Protocol: Maximize Convergence Speed

Discrete-time single integrator ➔ x(k + 1) = x(k)− Kx(k − τn)

Characteristic polynomials ➔ h(z , λ) = zτn+1 − zτn + λ, λ1, . . . , λN = eig(K )

➔ (τn + 1)N modes

➔ Convergence speed determined by the slowest mode(s) < 1

Problem

Choose the feedback gains that minimize the convergence rate:

K∗ = argmin
K

max
z,λ̸=λ1

{|z | : h(z , λ) = 0}︸ ︷︷ ︸
slowest modes
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Sneak Peek Into Solution Approach

Slowest mode maxz{|z | : h(z , λ) = 0} vs. eigenvalue λ:

➔ The two slowest modes correspond to λ2 and λN

➔ They must be equal!

➔ Can be exactly solved through an SDP + an algebraic equation
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Convergence Speed: Decentralized-Centralized Trade-off

Uniform gains: K = −gL, L Laplacian matrix

τn ∝ n τn ∝ n2

L. Ballotta, V. Gupta, “Faster Consensus via a Sparser Controller,” IEEE L-CSS 2023
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Take-Home Message and Future Directions

Communication delays determine the optimal controller:

optimal architecture depends on how delays change with number of links

stochastic dynamics appear to require sparser control architectures

To the moon:

Other control settings (robust, nonlinear...)

Broader communication constraints (SLS, TV networks/delays...)

Thank you for your attention!

l.ballotta@tudelft.nl
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