On the Optimality of Sparse Feedback Control Under Architecture-Dependent Communication Delays

Luca Ballotta

Delft University of Technology

Smart sensor networks

Smart sensor networks

Smart grids

Smart sensor networks

Smart grids

Vehicular networks

Smart sensor networks

Smart grids

Vehicular networks

Smart agriculture

A Classic Tradeoff: Performance vs. Resources

Example: Distributed Control

Example: Distributed Control

Really need to use all sensors/links?

Acknowledgments

Luca Schenato (Unipd)

Mihailo Jovanović (USC)

Vijay Gupta (Purdue)

Control performance

Luca Ballotta

Control performance

Implementation complexity

Control performance

Implementation complexity

→ Centralized controller: performance

Control performance

Implementation complexity

- → Centralized controller: performance
- → Distributed controller: robustness, scalability...

Luca Ballotta

Control performance

Implementation complexity

- → Centralized controller: performance(?)
- → Distributed controller: robustness, scalability...

Luca Ballotta

Assumption

Communication delays increase with number of links

Assumption

Communication delays increase with number of links

Assumption

Communication delays increase with number of links

Assumption

Communication delays increase with number of links

Optimal architecture is sparse, in general

The Role of Communication Delays in Optimal Distributed Control

Assumption

Communication delays increase with number of links

Optimal architecture is sparse, in general

Luca Ballotta

The Role of Communication Delays in Optimal Distributed Control

8 / 19

Agent *i* with state (error) x_i

Agent *i* with state (error) x_i

 \rightarrow feedback from *n* neighbors

Agent *i* with state (error) x_i

- \rightarrow feedback from *n* neighbors
- → communication delay $\tau_n \uparrow n$

Agent *i* with state (error) x_i

- \rightarrow feedback from *n* neighbors
- → communication delay $\tau_n \uparrow n$
- → symmetric feedback gains k_1, \ldots, k_n

Agent *i* with state (error) x_i

- \rightarrow feedback from *n* neighbors
- → communication delay $\tau_n \uparrow n$
- → symmetric feedback gains k_1, \ldots, k_n

Continuous-time single integrator $\rightarrow dx(t) = -Kx(t - \tau_n)dt + dw(t)$

Agent *i* with state (error) x_i

- \rightarrow feedback from *n* neighbors
- → communication delay $\tau_n \uparrow n$
- → symmetric feedback gains k_1, \ldots, k_n

Continuous-time single integrator $\rightarrow dx(t) = -Kx(t - \tau_n)dt + dw(t)$

Agent *i* with state (error) x_i

- \rightarrow feedback from *n* neighbors
- → communication delay $\tau_n \uparrow n$
- → symmetric feedback gains k_1, \ldots, k_n

Continuous-time single integrator \rightarrow d

$$\mathbf{d}\mathbf{x}(t) = -\mathbf{K}\mathbf{x}(t - \tau_n)\mathbf{d}t + \mathbf{d}\mathbf{w}(t)$$

Setup: Example with Circulant Topology

n = 2 pairs of neighbors

 $\mathrm{d}x(t) = -\mathbf{K}x(t-\tau_n)\mathrm{d}t + \mathrm{d}w(t)$

$$dx(t) = -Kx(t - \tau_n)dt + dw(t)$$

Change of basis $\rightarrow d\tilde{x}_j(t) = -\lambda_j \tilde{x}_j(t - \tau_n)dt + d\tilde{w}_j(t) \quad j = 1, ..., N$

$$dx(t) = -Kx(t - \tau_n)dt + dw(t)$$

Change of basis $\Rightarrow d\tilde{x}_j(t) = -\lambda_j \tilde{x}_j(t - \tau_n)dt + d\tilde{w}_j(t) \quad j = 1, ..., N$

Steady-state variance¹: $\sigma_{ss}^{2}(\lambda_{j}) = \frac{1 + \sin(\lambda_{j}\tau_{n})}{2\lambda_{j}\cos(\lambda_{j}\tau_{n})}$

$$dx(t) = -Kx(t - \tau_n)dt + dw(t)$$
Change of basis $\rightarrow d\tilde{x}_j(t) = -\lambda_j \tilde{x}_j(t - \tau_n)dt + d\tilde{w}_j(t)$ $j = 1, ..., N$
Steady-state variance¹: $\sigma_{ss}^2(\lambda_j) = \frac{1 + \sin(\lambda_j \tau_n)}{2\lambda_j \cos(\lambda_j \tau_n)}$ $\lambda_j \in \left(0, \frac{\pi}{2\tau_n}\right)$

Optimal Mean-Square Consensus

Problem

Choose the feedback gains that minimize the steady-state variance:

$$\operatorname*{arg\,min}_{\mathcal{K}} \, \mathbb{E} \left[\lim_{t o \infty} \| x(t) \|^2
ight]$$

Optimal Mean-Square Consensus

Problem

Choose the feedback gains that minimize the steady-state variance:

$$\mathop{\mathrm{arg\,min}}_{\mathcal{K}} \, \mathbb{E} \left[\lim_{t o \infty} \| x(t) \|^2
ight]$$

$$\operatorname{rg\,min}_{K} \sum_{\lambda_{j}=2}^{N} \sigma_{ss}^{2}(\lambda_{j})$$

а

Optimal Mean-Square Consensus

Problem

Choose the feedback gains that minimize the steady-state variance:

$$\mathop{rg\, {
m min}}_{\mathcal{K}} \, \mathbb{E} \left[\lim_{t o \infty} \| x(t) \|^2
ight]$$

Circular Formation: Decentralized-Centralized Trade-off

Circular Formation: Decentralized-Centralized Trade-off

The Role of Communication Delays in Optimal Distributed Control

Extensions to More Realistic Dynamics

 $\mathrm{d} x_i(t) = \frac{u_{P,i}(t)}{\mathrm{d} t} + \mathrm{d} w_i(t)$

More realistic

Extensions to More Realistic Dynamics

$$\mathrm{d}x_i(t) = \frac{u_{P,i}(t)}{\mathrm{d}t} + \mathrm{d}w_i(t)$$

$$\begin{aligned} \mathrm{d} x_i(t) &= z_i(t) \mathrm{d} t \\ \mathrm{d} z_i(t) &= \eta(-z_i(t) + u_{P,i}(t)) \mathrm{d} t + \mathrm{d} w_i(t) \end{aligned}$$
 Inertia

More realistic

Extensions to More Realistic Dynamics

More realistic

Extensions to Undirected Network

L. Ballotta, M. R. Jovanović, L. Schenato, "Can Decentralized Control Outperform Centralized? The Role of Communication Latency," IEEE TCNS 2023

Luca Ballotta

The Role of Communication Delays in Optimal Distributed Control

15 / 19

Extensions to Undirected Network

L. Ballotta, M. R. Jovanović, L. Schenato, "Can Decentralized Control Outperform Centralized? The Role of Communication Latency," IEEE TCNS 2023

Luca Ballotta

The Role of Communication Delays in Optimal Distributed Control

15 / 19

Discrete-time single integrator $\rightarrow x(k)$

$$\mathbf{x}(k+1) = \mathbf{x}(k) - \mathbf{K}\mathbf{x}(k-\tau_n)$$

Discrete-time single integrator $\rightarrow x(k+1) = x(k) - Kx(k-\tau_n)$

Characteristic polynomials $\rightarrow h(z,\lambda) = z^{\tau_n+1} - z^{\tau_n} + \lambda, \quad \lambda_1, \dots, \lambda_N = eig(K)$

 \rightarrow $(\tau_n + 1)N$ modes

Discrete-time single integrator $\rightarrow x(k+1) = x(k) - Kx(k-\tau_n)$

Characteristic polynomials $\rightarrow h(z,\lambda) = z^{\tau_n+1} - z^{\tau_n} + \lambda, \quad \lambda_1, \dots, \lambda_N = eig(K)$

 \rightarrow $(\tau_n + 1)N$ modes

 \rightarrow Convergence speed determined by the slowest mode(s) < 1

Discrete-time single integrator $\rightarrow x(k+1) = x(k) - Kx(k-\tau_n)$

Characteristic polynomials $\rightarrow h(z,\lambda) = z^{\tau_n+1} - z^{\tau_n} + \lambda, \quad \lambda_1, \dots, \lambda_N = eig(K)$

 \rightarrow $(\tau_n + 1)N$ modes

 \rightarrow Convergence speed determined by the slowest mode(s) < 1

Problem

Choose the feedback gains that minimize the convergence rate:

Discrete-time single integrator $\rightarrow x(k+1) = x(k) - Kx(k-\tau_n)$

Characteristic polynomials $\rightarrow h(z,\lambda) = z^{\tau_n+1} - z^{\tau_n} + \lambda, \quad \lambda_1, \dots, \lambda_N = eig(K)$

 \rightarrow $(\tau_n + 1)N$ modes

 $\textbf{\rightarrow}$ Convergence speed determined by the slowest mode(s) <1

Problem

Choose the feedback gains that minimize the convergence rate:

$$\mathcal{K}^{*} = \arg\min_{\mathcal{K}} \underbrace{\max_{z, \lambda \neq \lambda_{1}} \{ |z| : h(z, \lambda) = 0 \}}_{slowest \ modes}$$

Slowest mode $\max_{z} \{ |z| : h(z, \lambda) = 0 \}$ vs. eigenvalue λ :

Slowest mode $\max_{z} \{ |z| : h(z, \lambda) = 0 \}$ vs. eigenvalue λ :

→ The two slowest modes correspond to λ_2 and λ_N

Slowest mode $\max_{z} \{ |z| : h(z, \lambda) = 0 \}$ vs. eigenvalue λ :

→ The two slowest modes correspond to λ_2 and λ_N

 \rightarrow They must be equal!

Slowest mode $\max_{z} \{ |z| : h(z, \lambda) = 0 \}$ vs. eigenvalue λ :

- → The two slowest modes correspond to λ_2 and λ_N
- \rightarrow They must be equal!
- \rightarrow Can be **exactly** solved through an SDP + an algebraic equation

Luca Ballotta

Convergence Speed: Decentralized-Centralized Trade-off

Uniform gains: K = -gL, L Laplacian matrix

Convergence Speed: Decentralized-Centralized Trade-off

Uniform gains: K = -gL, L Laplacian matrix

L. Ballotta, V. Gupta, "Faster Consensus via a Sparser Controller," IEEE L-CSS 2023

The Role of Communication Delays in Optimal Distributed Control

Communication delays determine the optimal controller:

Communication delays determine the optimal controller:

• optimal architecture depends on how delays change with number of links

Communication delays determine the optimal controller:

- optimal architecture depends on how delays change with number of links
- stochastic dynamics appear to require sparser control architectures

Communication delays determine the optimal controller:

- optimal architecture depends on how delays change with number of links
- stochastic dynamics appear to require sparser control architectures

To the moon:

• Other control settings (robust, nonlinear...)

Communication delays determine the optimal controller:

- optimal architecture depends on how delays change with number of links
- stochastic dynamics appear to require sparser control architectures

To the moon:

- Other control settings (robust, nonlinear...)
- Broader communication constraints (SLS, TV networks/delays...)

Communication delays determine the optimal controller:

- optimal architecture depends on how delays change with number of links
- stochastic dynamics appear to require sparser control architectures

To the moon:

- Other control settings (robust, nonlinear...)
- Broader communication constraints (SLS, TV networks/delays...)

Thank you for your attention!

l.ballotta@tudelft.nl