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The Invisible Webs Around Us

Several “controllable” network systems keep our society functioning
e.g., social, biological, chemical, energy, financial, defense, healthcare, etc.
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Control Networks and Graphs

Network systems are realized through interconnected subsystems

Map of Dutch Electricity Grid

Control theory: analyzing and influencing the network nodes to change the
system behavior
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Linear Dynamical System

State Space Model

State Evolution: xk = Axk−1 + Buk

Observations: y k = Cxk + w k

State vector xk ∈ RN×1 Transition matrix A ∈ RN×N

Measurement vector y k ∈ Rm×1 Input matrix B ∈ RN×L

Measurement noise w k ∈ Rm×1 Output matrix C ∈ Rm×N

xk =


a11 0 0 0 0 0
a21 0 0 0 0 a26
0 a32 0 0 0 0
0 0 a43 0 0 0
a51 0 0 a54 0 0
a61 0 0 0 0 0

 xk−1 +


0 0
b2 0
0 0
0 0
0 b5
0 0

 uk
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Example System: Social Networks

State Evolution: xk = Axk−1 + Buk

Observations: y k = Cxk + w k

State Social opinion (e.g., movie rating, political inclination)
Transition matrix Social connections (e.g.: Instagram/Twitter followers, neighbors)
Input Social influencers (e.g.: marketing agents, political leaders)
Observations Rating systems (e.g.: IMDb ratings, gross sales, surveys)
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What is Sparse Control?

Sparse Control is minimal intervention!

Why sparse control?

Biological systems: Minimal drug control

Resource-constrained system: Low communication and computational
burden

Social network: Budget-constrained advertising

Cyber-physical attacks: Limited access to the system
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What is Sparsity?

Control vector with a lot of zeros

Uses only a few actuators among the available
ones

Admits compact representations (thanks to
compressed sensing)

This talk: Sparse control in discrete-time linear dynamical systems

Talk Outline

Feasibility of sparse control: When does sparse control work?

Optimal control: How do we design/detect sparse control?

Case study: Social network manipulation
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Sparsity-constrained Linear Dynamical System

State Space Model

State Evolution: xk = Axk−1 + Buk

Observations: y k = Cxk + w k

State vector xk ∈ RN×1 Transition matrix A ∈ RN×N

Measurement vector y k ∈ Rm×1 Input matrix B ∈ RN×L

Measurement noise w k ∈ Rm×1 Output matrix C ∈ Rm×N

Constraint

Sparsity: ∥uk∥0 ≪ L, k = 1, 2, . . .

Time invariant or time varying support

G. Joseph — Sparse Control 9



Controllability Using Sparse Inputs
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Controllability

Ability of a control system to reach any given state
from any initial state in a finite time

xfinal − AKBx init =
[
AK−1B AK−2B . . .B

]︸ ︷︷ ︸
controllability matrix


u1

u2

...
uK


Two classic tests for controllability without any constraints:

1 Kalman test:

Rank
{[

AN−1B AN−2B . . .B
]}

= N

2 Popov–Belevitch–Hautus test (PBH test):

Rank
{[

A − λI B
]}

= N ∀λ ∈ C
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Sparse Controllability: Time Invariant Support

xfinal − AKBx init =
[
AK−1B AK−2B . . .B

]︸ ︷︷ ︸
controllability matrix


u1

u2

...
uK


Assume that the support of uk is S ⊆ {1, 2, . . . ,N}, for all values of k

∃K < ∞ such that xfinal −AKBx init =
[
AK−1BS AK−2BS . . .BS

]︸ ︷︷ ︸
controllability matrix


u1,S
u2,S
...

uK ,S


Equivalent Condition: PBH Test for (A,BS)

There exists K < ∞ and S with |S| = s

Rank
{[

A − λI BS
]}

= N ∀λ ∈ C NP hard complexity!
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Sparse Controllability: Time Varying Support

xfinal − AKBx init =
[
AK−1B AK−2B . . .B

]︸ ︷︷ ︸
controllability matrix


u1

u2

...
uK


Assume that the support of uk is Sk ⊆ {1, 2, . . . ,N}

∃K < ∞ such that RN =
⋃

|Sk |≤s

Span
{[

AK−1BS1 AK−2BS2 . . .BSK−1

]}
︸ ︷︷ ︸

finite union of subspaces

Equivalent Condition: Kalman rank-type Test

There exists K < ∞ and {Sk}Kk=1 with |Sk | = s

Rank
{[

AK−1BS1 AK−2BS2 . . .BSK

]}
= N

Question: can we find a simpler sparse controllability condition?
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Necessary Conditions

1 Sparse controllability =⇒ controllability =⇒ PBH test succeeds

2 Kalman rank-type test succeeds =⇒ ∃K and {Sk}Kk=1 such that

Rank
{[

AK−1BS1 AK−2BS2 . . . ABSK−1 BSK

]}
= N

Rank

{[
A
[
AK−2BS1 AK−3BS2 . . . BSK−1

]︸ ︷︷ ︸
subset of span of A

BSK

]}
= N

=⇒ Rank
{[

A BSK

]}
= N

=⇒ Rank {A}+ s ≥ N

Necessary conditions

1 For all λ ∈ C,Rank
{[

A − λI B
]}

= N

2 s ≥ N − Rank {A}

These are also sufficient for s−sparse controllability!
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Sparse Controllability: Necessary and Sufficient Conditions

xk = Axk−1 + Buk and ∥uk∥0 ≤ s,

1 For all λ ∈ C,
Rank

{[
A − λI B

]}
= N

2 s ≥ N − Rank {A}
s-sparse controllability ⇐⇒

Classical PBH test is a special case

Kalman decomposition-type procedure separating state space:
Sparse-controllable + Sparse-uncontrollable + Uncontrollable states
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Number of Sparse Control Inputs

Bounds on the number of input vectors K∗ to guarantee s-sparse
controllability

N

R∗
B,s

≤ K∗ ≤ min

{
q

⌈
S∗

s

⌉
,N − R∗

B,s + 1

}
≤ N,

R∗
B,s ≜ min {Rank {B} , s}

q ≜ degree of the minimal polynomial of A

S∗ ≜ N − Rank {A}
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Other Extensions: Sparse Control Inputs

Sparse controllability - fixed support
⇔ Rank

{[
A − λI BS

]}
= N ∀λ ∈ C and some S with |S| = s

Sparse controllability
⇔ Controllability and s ≥ N − Rank {A}

Non-negative sparse controllability
⇔ Non-negative controllability and s ≥ N − Rank {A}

Output sparse controllability
⇔ Output controllability and bounds on sparsity

Sparse stabilizability
⇔ Stabilizability (no constraints on sparsity s)

G. Joseph — Sparse Control 17



Other Extensions: Sparse Control Inputs

Sparse controllability - fixed support
⇔ Rank

{[
A − λI BS

]}
= N ∀λ ∈ C and some S with |S| = s

Sparse controllability
⇔ Controllability and s ≥ N − Rank {A}

Non-negative sparse controllability
⇔ Non-negative controllability and s ≥ N − Rank {A}

Output sparse controllability
⇔ Output controllability and bounds on sparsity

Sparse stabilizability
⇔ Stabilizability (no constraints on sparsity s)

G. Joseph — Sparse Control 17



Other Extensions: Sparse Control Inputs

Sparse controllability - fixed support
⇔ Rank

{[
A − λI BS

]}
= N ∀λ ∈ C and some S with |S| = s

Sparse controllability
⇔ Controllability and s ≥ N − Rank {A}

Non-negative sparse controllability
⇔ Non-negative controllability and s ≥ N − Rank {A}

Output sparse controllability
⇔ Output controllability and bounds on sparsity

Sparse stabilizability
⇔ Stabilizability (no constraints on sparsity s)

G. Joseph — Sparse Control 17



Other Extensions: Sparse Control Inputs

Sparse controllability - fixed support
⇔ Rank

{[
A − λI BS

]}
= N ∀λ ∈ C and some S with |S| = s

Sparse controllability
⇔ Controllability and s ≥ N − Rank {A}

Non-negative sparse controllability
⇔ Non-negative controllability and s ≥ N − Rank {A}

Output sparse controllability
⇔ Output controllability and bounds on sparsity

Sparse stabilizability
⇔ Stabilizability (no constraints on sparsity s)

G. Joseph — Sparse Control 17



Case Study: Manipulation of Social Network
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Manipulation of Social Network

Who?
Marketing
Targeted fake-news campaigns
Political advertising

Why? To control and change the public opinion in their favor

How?
By influencing a small number of people
due to budget/physical constraints
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Some Examples

Company offering free samples to a few individuals

Election candidate visiting voters

Question: Is it possible to manipulate network opinion under budget
constraints?

Image courtesy: ToughNickel, Romania Insider
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Random Graph Model

Social network with N people
Weighted adjacency matrix:

Ā = Λ︸︷︷︸
normalization

 A︸︷︷︸
adjacency
matrix

⊙ wwT︸ ︷︷ ︸
weights

 ∈ RN×N

⊙ Hadamard product

w ∈ RN denotes the weight of each individual’s
opinion in the network

Adjacency Matrix: Erdős-Rényi Graph

Undirected (eg: Facebook) Directed (eg.: Twitter)

Aij

{
iid∼ Ber(p) for j < i

= 0 for j = i
Aij

{
iid∼ Ber(p) for j ̸= i

= 0 for j = i .

Aij = Aji , j > i
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Network Opinion Dynamics Model

DeGroot Dynamics Model

Normalized weighted
average of neighbors

+
Manipulator’s influence

xk = Āxk−1 + uk ∈ RN

Ā = Λ
[
A ⊙

(
wwT

)]

xk : Network opinion at time k
uk : Control input
Ā: Weighted adjacency matrix

s > 0: Sparsity level

Sparsity Constraint

Manipulator can
influence at most s

individuals in the network

∥uk∥0 ≤ s

k = 1, 2, . . .

G. Joseph — Sparse Control 22



Non-sparse Vs Sparse

xk = Āxk−1 + uk ∈ RN

Ā = Λ
[
A ⊙

(
wwT

)]

Note that the input matrix B = I
Classical PBH test:

Rank
{[

Ā − λI I
]}

= N

Non-sparse case: network opinion is always controllable

Sparse-case: depends on the sparsity bound
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Undirected Graphs

Evolution model: xk = Λ
(
A ⊙

(
wwT

))
xk−1 + uk

Erdős-Rényi model: Aij

{
iid∼ Ber(p) for j < i

= 0 for j = i
and Aij = Aji

Assumption:
(N − s)−1 ≤ p ≤ 1− (N − s)−1

• Results hold unless p is too small or too large
• Sparser the system, wider the range of p

Network opinion is controllable with probability at least

s∑
i=0

(
N

i

)
(1− p)i(2N−i−1)/2

[
1− C exp

(
−c(p(N − i))1/32

)]
,

Network size N Sparsity s
Edge probability p Constants C , c > 0
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Probability Lower Bound

Network opinion is controllable with probability at least

s∑
i=0

(
N

i

)
(1− p)i(2N−i−1)/2

[
1− C exp

(
−c(p(N − i))1/32

)]
,

• Sparsity: As s increases, more terms in the summation

• Network size: As N → ∞, the bound goes to 1

bound ≥ 1− C exp
(
−c(p(N − i))1/32

)
• Edge probability:

✓ As p → 0, the bound → 0 (A → 0), and our result holds

✗ As p → 1, the bound ↛ 1 (A → 11T − I ), and result does not hold

Network size N Sparsity s
Edge probability p Constants C , c > 0
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Numerical Results: Variation with N and s
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Numerical Results: Variation with p
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Summary of Controllability Results

Controllability using sparse inputs:

• Polynomial time verification

• Can be ensured by applying at most N inputs

Opinion dynamics:

• Unconstrained manipulators succeed with probability one

• Probability of the manipulator’s success increases with network size and
sparsity

• Opinions on an asymptotically large network are almost surely controllable
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Design/Estimation of Sparse Control Inputs
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Design Problem: Driving the System to a Desired State

Given an initial state and a final state, how to choose the sparse inputs?

Recall that we need at most N sparse inputs

xfinal − AKx init︸ ︷︷ ︸
x̃∈RN×1

=
[
AK−1B AK−2B . . .B

]︸ ︷︷ ︸
Φ∈RN×NL


u1

u2

...
uN


︸ ︷︷ ︸

u∈RNL×1

=⇒ x̃ = Φu

Näıve approach:

Use standard sparse recovery algorithms from CS to estimate u

Need not ensure the sparsity constraints on individual uk ’s
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A Better Approach for Sparse Control Design

Sparse recovery algorithms specialized for estimating a sparse vector
formed by concatenating N sparse vectors

The new sparsity model is called piecewise sparsity

G. Joseph — Sparse Control 31



Designing Sparse Control with Time-invariant Support

How to choose the sparse inputs with a common support?

xfinal − AKx init︸ ︷︷ ︸
x̃∈RN×1

=
[
AK−1B AK−2B . . .B

]︸ ︷︷ ︸
Φ∈RN×NL


u1

u2

...
uN


︸ ︷︷ ︸

u∈RNL×1

=⇒ x̃ = Φu

uk ’s have a common support

Rearrange the sparse vector to get a block sparse vector
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Different Sparsity Models
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Sparse Control Design

Time-varying support: Limited algorithms

1 Piecewise OMP
2 Piecewise inverse scale space algorithm

Time-invariant support: Plenty of algorithms

1 Block OMP
2 Group LASSO
3 Block SBL
4 Learned block SBL

...
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Summary

State Evolution: xk = Axk−1 + Buk

Observations: y k = Cxk + w k

Sparsity constraint: More restricted inputs

Non-sparse Sparse

Solution
Least-square

solution

Piecewise sparse recovery algorithm
Block sparse algorithms

Kalman-SBL algorithms and variants

Existence
Kalman and PBH test

K = N
PBH test and s ≥ N − Rank {A}

K = N

PBH = Popov-Belovich-Hautus
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Last Slice: Structured LTI system

State Space Model
Dynamics: xk = Axk−1 + Buk

System matrices are known up to their zero/nonzero pattern:
0 =⇒ edge weight is zero;
x =⇒ edge weight is non-zero;
? =⇒ edge weight is zero/non-zero

xk =


x 0 0 0 0 0
x 0 0 0 0 ?
0 x 0 0 0 0
0 0 x 0 0 0
x 0 0 ? 0 0
x 0 0 0 0 0

 xk−1 +


0 0
x 0
0 0
0 0
0 x
0 0

 uk
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Structural Contollability

A structured LTI system (A;B) is called structurally controllable if it is
controllable for at least one of its numerical realizations (A;B)

A structured LTI system (A;B) is called strong structurally controllable
if it is controllable for all of its numerical realizations (A;B)

Structural controllability is defined using zero-forcing numbers in graphs

Instead of Kalman and PBH test, we have graph coloring based tests

Similar problems can be explored for structured systems
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Open Problems

Other types of sparsity constraints: sparsity over time, actuator use,
feedback control

New algorithms design/estimation? Do deep learning-based algorithms
help?

New applications related to networks? Graphical models?

Sparsity + structural controllability is almost untouched
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