

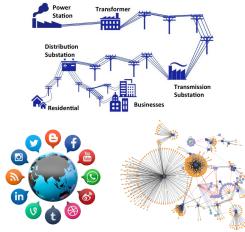
Controllability of Networks Under Sparsity Constraints

Geethu Joseph Signal Processing Systems Group

Seminar Graphs&Data@TU Delft

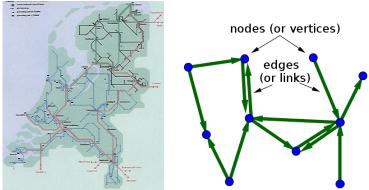
The Invisible Webs Around Us

 Several "controllable" network systems keep our society functioning e.g., social, biological, chemical, energy, financial, defense, healthcare, etc.



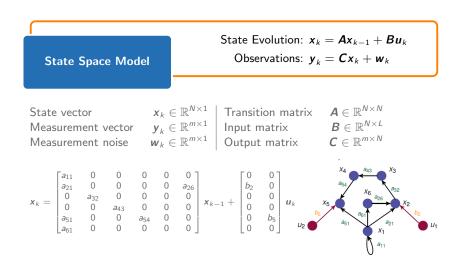
Control Networks and Graphs

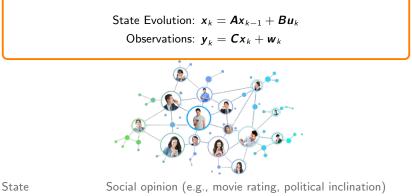
Network systems are realized through interconnected subsystems



Map of Dutch Electricity Grid

Control theory: analyzing and influencing the network nodes to change the system behavior





Transition matrix Input Observations Social opinion (e.g., movie rating, political inclination) Social connections (e.g.: Instagram/Twitter followers, neighbors) Social influencers (e.g.: marketing agents, political leaders) Rating systems (e.g.: IMDb ratings, gross sales, surveys)

What is Sparse Control?

Sparse Control is minimal intervention!

Why sparse control?

- Biological systems: Minimal drug control
- Resource-constrained system: Low communication and computational burden
- Social network: Budget-constrained advertising
- Cyber-physical attacks: Limited access to the system

What is Sparse Control?

Sparse Control is minimal intervention!

Why sparse control?

- Biological systems: Minimal drug control
- Resource-constrained system: Low communication and computational burden
- Social network: Budget-constrained advertising
- Cyber-physical attacks: Limited access to the system

- Control vector with a lot of zeros
- Uses only a few actuators among the available ones
- Admits compact representations (thanks to compressed sensing)

This talk: Sparse control in discrete-time linear dynamical systems

- Feasibility of sparse control: When does sparse control work?
- Optimal control: How do we design/detect sparse control?
- Case study: Social network manipulation

- Control vector with a lot of zeros
- Uses only a few actuators among the available ones
- Admits compact representations (thanks to compressed sensing)

This talk: Sparse control in discrete-time linear dynamical systems

- Feasibility of sparse control: When does sparse control work?
- Optimal control: How do we design/detect sparse control?
- Case study: Social network manipulation

- Control vector with a lot of zeros
- Uses only a few actuators among the available ones
- Admits compact representations (thanks to compressed sensing)

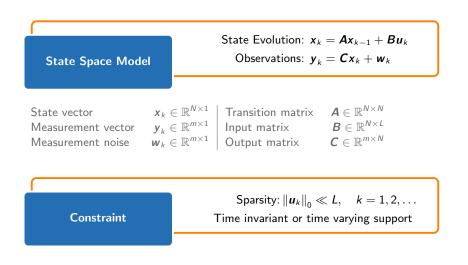
This talk: Sparse control in discrete-time linear dynamical systems

- Feasibility of sparse control: When does sparse control work?
- Optimal control: How do we design/detect sparse control?
- Case study: Social network manipulation

- Control vector with a lot of zeros
- Uses only a few actuators among the available ones
- Admits compact representations (thanks to compressed sensing)

This talk: Sparse control in discrete-time linear dynamical systems

- Feasibility of sparse control: When does sparse control work?
- Optimal control: How do we design/detect sparse control?
- Case study: Social network manipulation



Controllability Using Sparse Inputs

Ability of a control system to reach any given state from any initial state in a finite time

$$x_{\text{final}} - \mathbf{A}^{K} \mathbf{B} x_{\text{init}} = \underbrace{\begin{bmatrix} \mathbf{A}^{K-1} \mathbf{B} & \mathbf{A}^{K-2} \mathbf{B} & \dots \mathbf{B} \end{bmatrix}}_{\text{controllability matrix}} \begin{bmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \\ \vdots \\ \mathbf{u}_{K} \end{bmatrix}$$

Two classic tests for controllability without any constraints:

Kalman test:

Rank
$$\{ \begin{bmatrix} \mathbf{A}^{N-1}\mathbf{B} & \mathbf{A}^{N-2}\mathbf{B} & \dots \mathbf{B} \end{bmatrix} \} = N$$

Popov–Belevitch–Hautus test (PBH test): Rank $\{ \begin{bmatrix} A - \lambda I & B \end{bmatrix} \} = N \quad \forall \lambda \in \mathbb{C}$

Sparse Controllability: Time Invariant Support

$$\boldsymbol{x}_{\text{final}} - \boldsymbol{A}^{K} \boldsymbol{B} \boldsymbol{x}_{\text{init}} = \underbrace{\begin{bmatrix} \boldsymbol{A}^{K-1} \boldsymbol{B} & \boldsymbol{A}^{K-2} \boldsymbol{B} & \dots \boldsymbol{B} \end{bmatrix}}_{\text{controllability matrix}} \begin{bmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \\ \vdots \\ \boldsymbol{u}_{K} \end{bmatrix}$$

Assume that the support of u_k is $S \subseteq \{1, 2, \dots, N\}$, for all values of k

$$\exists K < \infty \text{ such that } \mathbf{x}_{\text{final}} - \mathbf{A}^{K} \mathbf{B} \mathbf{x}_{\text{init}} = \underbrace{\left[\mathbf{A}^{K-1} \mathbf{B}_{S} \quad \mathbf{A}^{K-2} \mathbf{B}_{S} \quad \dots \mathbf{B}_{S} \right]}_{\text{controllability matrix}} \begin{bmatrix} \mathbf{u}_{1,S} \\ \mathbf{u}_{2,S} \\ \vdots \\ \mathbf{u}_{K,S} \end{bmatrix}$$

Equivalent Condition: PBH Test for (A, B_S)

There exists
$$K < \infty$$
 and S with $|S| = s$

Rank $\{ \begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} & \mathbf{B}_{S} \end{bmatrix} \} = N \quad \forall \lambda \in \mathbb{C}$ NP hard complexity!

$$\boldsymbol{x}_{\text{final}} - \boldsymbol{A}^{K} \boldsymbol{B} \boldsymbol{x}_{\text{init}} = \underbrace{\left[\boldsymbol{A}^{K-1} \boldsymbol{B} \quad \boldsymbol{A}^{K-2} \boldsymbol{B} \quad \dots \boldsymbol{B} \right]}_{\text{controllability matrix}} \begin{bmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \\ \vdots \\ \boldsymbol{u}_{K} \end{bmatrix}$$

Assume that the support of u_k is $S \subseteq \{1, 2, ..., N\}$, for all values of k $\begin{bmatrix} u_{1,S} \end{bmatrix}$

$$\exists K < \infty \text{ such that } x_{\text{final}} - A^{K}Bx_{\text{init}} = \underbrace{\left[A^{K-1}B_{S} \quad A^{K-2}B_{S} \quad \dots B_{S}\right]}_{\text{controllability matrix}} \begin{bmatrix} u_{2,S} \\ \vdots \\ u_{K,S} \end{bmatrix}$$

Equivalent Condition: PBH Test for
$$(A, B_S)$$

There exists
$$K < \infty$$
 and S with $|S| = s$

Rank $\{ \begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} & \mathbf{B}_{S} \end{bmatrix} \} = N \quad \forall \lambda \in \mathbb{C}$ NP hard complexity!

$$\boldsymbol{x}_{\text{final}} - \boldsymbol{A}^{K} \boldsymbol{B} \boldsymbol{x}_{\text{init}} = \underbrace{[\boldsymbol{A}^{K-1} \boldsymbol{B} \quad \boldsymbol{A}^{K-2} \boldsymbol{B} \quad \dots \boldsymbol{B}]}_{\text{controllability matrix}} \begin{bmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \\ \vdots \\ \boldsymbol{u}_{K} \end{bmatrix}$$

• Assume that the support of u_k is $\mathcal{S} \subseteq \{1, 2, \dots, N\}$, for all values of k

$$\exists K < \infty \text{ such that } x_{\text{final}} - A^{K}Bx_{\text{init}} = \underbrace{\left[A^{K-1}B_{\mathcal{S}} \quad A^{K-2}B_{\mathcal{S}} \quad \dots B_{\mathcal{S}}\right]}_{\text{controllability matrix}} \begin{bmatrix} u_{1,\mathcal{S}} \\ u_{2,\mathcal{S}} \\ \vdots \\ u_{K,\mathcal{S}} \end{bmatrix}$$

Equivalent Condition: PBH Test for (A, B_S)

There exists
$$\mathit{K} < \infty$$
 and $\mathit{\mathcal{S}}$ with $|\mathcal{S}| = s$

$$\mathsf{Rank}\left\{\begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} & \mathbf{B}_{\mathcal{S}}\end{bmatrix}\right\} = \mathbf{N} \quad \forall \lambda \in \mathbb{C} \qquad \mathsf{NP} \text{ hard complexity!}$$

Sparse Controllability: Time Varying Support

$$\boldsymbol{x}_{\text{final}} - \boldsymbol{A}^{K} \boldsymbol{B} \boldsymbol{x}_{\text{init}} = \underbrace{\left[\boldsymbol{A}^{K-1} \boldsymbol{B} \quad \boldsymbol{A}^{K-2} \boldsymbol{B} \quad \dots \boldsymbol{B} \right]}_{\text{controllability matrix}} \begin{bmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \\ \vdots \\ \boldsymbol{u}_{K} \end{bmatrix}$$

Assume that the support of \boldsymbol{u}_k is $\mathcal{S}_k \subseteq \{1, 2, \dots, N\}$

$$\exists K < \infty \text{ such that } \mathbb{R}^N = \bigcup_{|S_k| \le s} \operatorname{Span} \left\{ \begin{bmatrix} A^{K-1} B_{S_1} & A^{K-2} B_{S_2} & \dots & B_{S_{K-1}} \end{bmatrix} \right\}$$

finite union of subspaces

Equivalent Condition: Kalman rank-type Test

There exists $K < \infty$ and $\{\mathcal{S}_k\}_{k=1}^K$ with $|\mathcal{S}_k| = s$

$$\operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A}^{K-1}\mathbf{B}_{\mathcal{S}_1} & \mathbf{A}^{K-2}\mathbf{B}_{\mathcal{S}_2} & \dots & \mathbf{B}_{\mathcal{S}_K}\end{bmatrix}\right\} = N$$

Question: can we find a simpler sparse controllability condition?

$$\boldsymbol{x}_{\text{final}} - \boldsymbol{A}^{K} \boldsymbol{B} \boldsymbol{x}_{\text{init}} = \underbrace{\left[\boldsymbol{A}^{K-1} \boldsymbol{B} \quad \boldsymbol{A}^{K-2} \boldsymbol{B} \quad \dots \boldsymbol{B} \right]}_{\text{controllability matrix}} \begin{bmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \\ \vdots \\ \boldsymbol{u}_{K} \end{bmatrix}$$

Assume that the support of \boldsymbol{u}_k is $\mathcal{S}_k \subseteq \{1, 2, \dots, N\}$

$$\exists K < \infty \text{ such that } \mathbb{R}^{N} = \bigcup_{|\mathcal{S}_{k}| \le s} \operatorname{Span} \left\{ \begin{bmatrix} \mathbf{A}^{K-1} \mathbf{B}_{\mathcal{S}_{1}} & \mathbf{A}^{K-2} \mathbf{B}_{\mathcal{S}_{2}} & \dots & \mathbf{B}_{\mathcal{S}_{K-1}} \end{bmatrix} \right\}$$

finite union of subspaces

Equivalent Condition: Kalman rank-type Test

There exists $K < \infty$ and $\{\mathcal{S}_k\}_{k=1}^K$ with $|\mathcal{S}_k| = s$

Rank {
$$\begin{bmatrix} \mathbf{A}^{K-1}\mathbf{B}_{S_1} & \mathbf{A}^{K-2}\mathbf{B}_{S_2} & \dots & \mathbf{B}_{S_K} \end{bmatrix}$$
 } = N

Question: can we find a simpler sparse controllability condition?

$$\boldsymbol{x}_{\text{final}} - \boldsymbol{A}^{K} \boldsymbol{B} \boldsymbol{x}_{\text{init}} = \underbrace{\left[\boldsymbol{A}^{K-1} \boldsymbol{B} \quad \boldsymbol{A}^{K-2} \boldsymbol{B} \quad \dots \boldsymbol{B} \right]}_{\text{controllability matrix}} \begin{bmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \\ \vdots \\ \boldsymbol{u}_{K} \end{bmatrix}$$

Assume that the support of \boldsymbol{u}_k is $\mathcal{S}_k \subseteq \{1, 2, \dots, N\}$

$$\exists K < \infty \text{ such that } \mathbb{R}^N = \bigcup_{|\mathcal{S}_k| \le s} \operatorname{Span} \left\{ \begin{bmatrix} \mathbf{A}^{K-1} \mathbf{B}_{\mathcal{S}_1} & \mathbf{A}^{K-2} \mathbf{B}_{\mathcal{S}_2} & \dots & \mathbf{B}_{\mathcal{S}_{K-1}} \end{bmatrix} \right\}$$

finite union of subspaces

Equivalent Condition: Kalman rank-type Test

There exists $K < \infty$ and $\{S_k\}_{k=1}^K$ with $|S_k| = s$

$$\operatorname{Rank}\left\{\begin{bmatrix}\boldsymbol{A}^{K-1}\boldsymbol{B}_{\mathcal{S}_1} & \boldsymbol{A}^{K-2}\boldsymbol{B}_{\mathcal{S}_2} & \dots & \boldsymbol{B}_{\mathcal{S}_K}\end{bmatrix}\right\} = N$$

Question: can we find a simpler sparse controllability condition?

 $\blacksquare Sparse controllability \implies controllability \implies \mathsf{PBH} \text{ test succeeds}$

2 Kalman rank-type test succeeds $\implies \exists K \text{ and } \{S_k\}_{k=1}^K$ such that

$$\operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A}^{K-1}\mathbf{B}_{S_{1}} & \mathbf{A}^{K-2}\mathbf{B}_{S_{2}} & \dots & \mathbf{A}\mathbf{B}_{S_{K-1}} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A}\begin{bmatrix} \mathbf{A}^{K-2}\mathbf{B}_{S_{1}} & \mathbf{A}^{K-3}\mathbf{B}_{S_{2}} & \dots & \mathbf{B}_{S_{K-1}}\end{bmatrix} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\Longrightarrow \operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\Longrightarrow \operatorname{Rank}\left\{\mathbf{A} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$

Necessary conditions

$$I For all \lambda \in \mathbb{C}, Rank \{ \begin{bmatrix} A - \lambda I & B \end{bmatrix} \} = N$$

$$I s \ge N - Rank \{ A \}$$

These are also sufficient for *s*-sparse controllability

 $\blacksquare Sparse controllability \implies controllability \implies \mathsf{PBH} \text{ test succeeds}$

2 Kalman rank-type test succeeds $\implies \exists K \text{ and } \{S_k\}_{k=1}^K$ such that

$$\operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A}^{K-1}\mathbf{B}_{S_{1}} & \mathbf{A}^{K-2}\mathbf{B}_{S_{2}} & \dots & \mathbf{A}\mathbf{B}_{S_{K-1}} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A}\begin{bmatrix} \mathbf{A}^{K-2}\mathbf{B}_{S_{1}} & \mathbf{A}^{K-3}\mathbf{B}_{S_{2}} & \dots & \mathbf{B}_{S_{K-1}}\end{bmatrix} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\Longrightarrow \operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\Longrightarrow \operatorname{Rank}\left\{\mathbf{A} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$

Necessary conditions

I For all
$$\lambda \in \mathbb{C}$$
, Rank $\{ \begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} & \mathbf{B} \end{bmatrix} \} = N$
2 $s \ge N - \text{Rank} \{ \mathbf{A} \}$

These are also sufficient for *s*-sparse controllability

 $\blacksquare Sparse controllability \implies controllability \implies \mathsf{PBH} \text{ test succeeds}$

2 Kalman rank-type test succeeds $\implies \exists K \text{ and } \{S_k\}_{k=1}^K$ such that

$$\operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A}^{K-1}\mathbf{B}_{S_{1}} & \mathbf{A}^{K-2}\mathbf{B}_{S_{2}} & \dots & \mathbf{A}\mathbf{B}_{S_{K-1}} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A}\begin{bmatrix} \mathbf{A}^{K-2}\mathbf{B}_{S_{1}} & \mathbf{A}^{K-3}\mathbf{B}_{S_{2}} & \dots & \mathbf{B}_{S_{K-1}}\end{bmatrix} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\Longrightarrow \operatorname{Rank}\left\{\begin{bmatrix} \mathbf{A} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$
$$\Longrightarrow \operatorname{Rank}\left\{\mathbf{A} & \mathbf{B}_{S_{K}}\end{bmatrix}\right\} = N$$

Necessary conditions

I For all
$$\lambda \in \mathbb{C}$$
, Rank $\{ \begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} & \mathbf{B} \end{bmatrix} \} = N$
2 $s \ge N - \text{Rank} \{ \mathbf{A} \}$

These are also sufficient for *s*-sparse controllability!

$$\boldsymbol{x}_k = \boldsymbol{A}\boldsymbol{x}_{k-1} + \boldsymbol{B}\boldsymbol{u}_k$$
 and $\|\boldsymbol{u}_k\|_0 \leq s$,

Classical PBH test is a special case

- **Kalman decomposition-type procedure** separating state space:
 - Sparse-controllable + Sparse-uncontrollable + Uncontrollable states

Bounds on the **number of input vectors** K^* to guarantee *s*-sparse controllability

$$\frac{N}{R_{B,s}^*} \leq K^* \leq \min\left\{q\left\lceil\frac{S^*}{s}\right\rceil, N - R_{B,s}^* + 1\right\} \leq N,$$
$$R_{B,s}^* \triangleq \min\left\{\text{Rank}\left\{B\right\}, s\right\}$$
$$q \triangleq \text{degree of the minimal polynomial of } \boldsymbol{A}$$
$$S^* \triangleq N - \text{Rank}\left\{\boldsymbol{A}\right\}$$

Sparse controllability

\Leftrightarrow Controllability and $s \ge N - \text{Rank} \{A\}$

■ Non-negative sparse controllability ⇔ Non-negative controllability and s ≥ N − Rank {A}

Output sparse controllability

⇒ Output controllability and bounds on sparsity

Sparse stabilizability

Sparse controllability

 $\Leftrightarrow \textbf{Controllability and } s \geq N - \textbf{Rank} \{ \textbf{A} \}$

■ Non-negative sparse controllability ⇔ Non-negative controllability and s ≥ N − Rank {A}

Output sparse controllability

⇒ Output controllability and bounds on sparsity

Sparse stabilizability

Sparse controllability

 $\Leftrightarrow \textbf{Controllability and } s \geq N - \textbf{Rank} \{ \textbf{A} \}$

■ Non-negative sparse controllability ⇔ Non-negative controllability and $s \ge N - \text{Rank} \{A\}$

Output sparse controllability

⇔ Output controllability and bounds on sparsity

Sparse stabilizability

Sparse controllability

 \Leftrightarrow Controllability and $s \ge N - \text{Rank} \{A\}$

■ Non-negative sparse controllability ⇔ Non-negative controllability and $s \ge N - \text{Rank} \{A\}$

Output sparse controllability

⇔ Output controllability and bounds on sparsity

Sparse stabilizability

Case Study: Manipulation of Social Network

Manipulation of Social Network

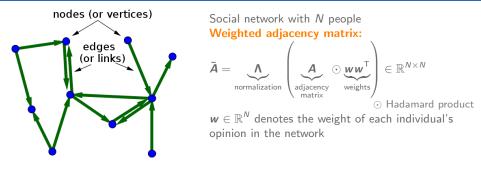
How? By influencing a small number of people due to budget/physical constraints

- Company offering free samples to a few individuals
- Election candidate visiting voters

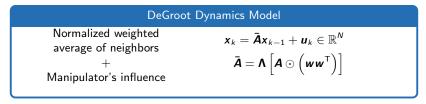
Question: Is it possible to manipulate network opinion under budget constraints?

Image courtesy: ToughNickel, Romania Insider

Random Graph Model



Adjacency Matrix: Erdős-Rényi GraphUndirected (eg: Facebook)Directed (eg.: Twitter) $A_{ij} \begin{cases} \overset{\text{iid}}{\sim} \operatorname{Ber}(p) & \text{for } j < i \\ = 0 & \text{for } j = i \\ A_{ij} = A_{ji}, j > i \end{cases}$ $A_{ij} \begin{cases} \overset{\text{iid}}{\sim} \operatorname{Ber}(p) & \text{for } j \neq i \\ = 0 & \text{for } j = i. \end{cases}$



- x_k : Network opinion at time k
- **u**_k: Control input
- **Ā**: Weighted adjacency matrix
- s > 0: Sparsity level

Sparsity Constraint

Manipulator can influence at most *s* individuals in the network

 $\|\boldsymbol{u}_k\|_0 \leq s$

 $k=1,2,\ldots$

$$\mathbf{x}_{k} = \bar{\mathbf{A}}\mathbf{x}_{k-1} + \mathbf{u}_{k} \in \mathbb{R}^{N}$$
$$\bar{\mathbf{A}} = \mathbf{\Lambda} \left[\mathbf{A} \odot \left(\mathbf{w} \mathbf{w}^{\mathsf{T}} \right) \right]$$

Classical PBH test:

$$\mathsf{Rank}\left\{\begin{bmatrix} \bar{\mathbf{A}} - \lambda \mathbf{I} & \mathbf{I}\end{bmatrix}\right\} = \mathbf{N}$$

■ Non-sparse case: network opinion is always controllable

Sparse-case: depends on the sparsity bound

Undirected Graphs

- **Evolution model:** $\boldsymbol{x}_k = \boldsymbol{\Lambda} \left(\boldsymbol{A} \odot \left(\boldsymbol{w} \boldsymbol{w}^{\mathsf{T}} \right) \right) \boldsymbol{x}_{k-1} + \boldsymbol{u}_k$
- **Erdős-Rényi model:** $A_{ij} \begin{cases} \stackrel{\text{iid}}{\sim} \operatorname{Ber}(p) & \text{for } j < i \\ = 0 & \text{for } j = i \end{cases}$ and $A_{ij} = A_{ji}$

Assumption:

$$(N-s)^{-1} \le p \le 1 - (N-s)^{-1}$$

- Results hold unless p is too small or too large
- Sparser the system, wider the range of p

Network opinion is controllable with probability at least

$$\sum_{i=0}^{s} {\binom{N}{i}} (1-p)^{i(2N-i-1)/2} \left[1-C \exp\left(-c(p(N-i))^{1/32}\right)\right],$$

Network size	Ν	Sparsity	5
Edge probability	р	Constants	C, c > 0

Network opinion is controllable with probability at least

$$\sum_{i=0}^{s} \binom{N}{i} (1-p)^{i(2N-i-1)/2} \left[1 - C \exp\left(-c(p(N-i))^{1/32}\right) \right],$$

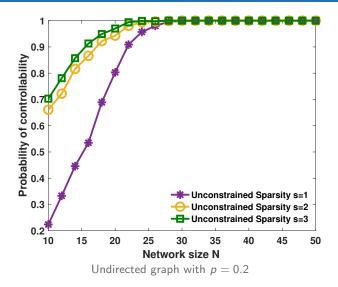
- Sparsity: As s increases, more terms in the summation
- Network size: As $N \to \infty$, the bound goes to 1

bound
$$\geq 1 - C \exp\left(-c(p(N-i))^{1/32}\right)$$

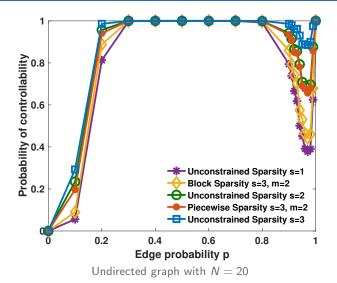
• Edge probability:

- ✓ As $p \rightarrow 0$, the bound $\rightarrow 0$ ($A \rightarrow 0$), and our result holds
- **X** As $p \rightarrow 1$, the bound $\not\rightarrow 1$ ($A \rightarrow 11^{\mathsf{T}} I$), and result does not hold

Network size	Ν	Sparsity	5
Edge probability	р	Constants	C, c > 0



Numerical Results: Variation with p



Summary of Controllability Results

ŤU

Controllability using sparse inputs:

- Polynomial time verification
- Can be ensured by applying at most N inputs

Opinion dynamics:

- Unconstrained manipulators succeed with probability one
- Probability of the manipulator's success increases with network size and sparsity
- Opinions on an asymptotically large network are almost surely controllable

Design/Estimation of Sparse Control Inputs

- Given an initial state and a final state, how to choose the sparse inputs?
- Recall that we need at most N sparse inputs

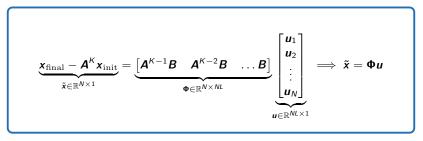
- Use standard sparse recovery algorithms from CS to estimate u
- Need not ensure the sparsity constraints on individual u_k's

Design Problem: Driving the System to a Desired State

- Given an initial state and a final state, how to choose the sparse inputs?
- Recall that we need at most N sparse inputs

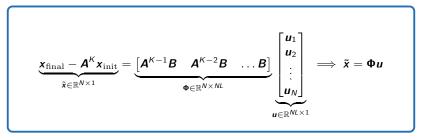
- Use standard sparse recovery algorithms from CS to estimate u
- Need not ensure the sparsity constraints on individual u_k's

- Given an initial state and a final state, how to choose the sparse inputs?
- Recall that we need at most N sparse inputs



- Use standard sparse recovery algorithms from CS to estimate u
- Need not ensure the sparsity constraints on individual u_k's

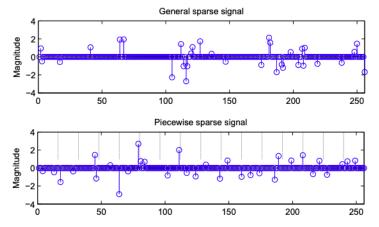
- Given an initial state and a final state, how to choose the sparse inputs?
- Recall that we need at most N sparse inputs



- Use standard sparse recovery algorithms from CS to estimate *u*
- Need not ensure the sparsity constraints on individual u_k 's

A Better Approach for Sparse Control Design

- Sparse recovery algorithms specialized for estimating a sparse vector formed by concatenating N sparse vectors
- The new sparsity model is called **piecewise sparsity**



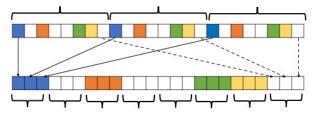
Designing Sparse Control with Time-invariant Support

How to choose the sparse inputs with a common support?

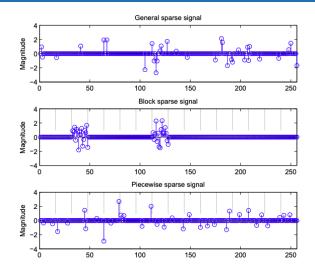
$$\underbrace{\mathbf{x}_{\text{final}} - \mathbf{A}^{K} \mathbf{x}_{\text{init}}}_{\tilde{\mathbf{x}} \in \mathbb{R}^{N \times 1}} = \underbrace{\left[\mathbf{A}^{K-1} \mathbf{B} \quad \mathbf{A}^{K-2} \mathbf{B} \quad \dots \mathbf{B}\right]}_{\Phi \in \mathbb{R}^{N \times NL}} \underbrace{\left[\begin{matrix}\mathbf{u}_{1}\\\mathbf{u}_{2}\\\vdots\\\mathbf{u}_{N}\end{matrix}\right]}_{\mathbf{u} \in \mathbb{R}^{NL \times 1}} \implies \tilde{\mathbf{x}} = \Phi \mathbf{u}$$

$$\underbrace{\mathbf{u}_{k} \text{'s have a common support}}_{\mathbf{u} \in \mathbb{R}^{NL \times 1}}$$

Rearrange the sparse vector to get a **block sparse vector**



Different Sparsity Models



- Time-varying support: Limited algorithms
 - Piecewise OMP
 - 2 Piecewise inverse scale space algorithm

Time-invariant support: Plenty of algorithms

- 1 Block OMP
- 2 Group LASSO
- 3 Block SBL
- 4 Learned block SBL

Summary

State Evolution: $x_k = Ax_{k-1} + Bu_k$ Observations: $y_k = Cx_k + w_k$

Sparsity constraint: More restricted inputs

	Non-sparse	Sparse
Solution	Least-square solution	Piecewise sparse recovery algorithm Block sparse algorithms Kalman-SBL algorithms and variants
Existence	Kalman and PBH test $K = N$	PBH test and $s \ge N - Rank \{ oldsymbol{A} \}$ $\mathcal{K} = N$

PBH = Popov-Belovich-Hautus

- $0 \implies$ edge weight is zero;
- $x \implies$ edge weight is non-zero;
- ? \implies edge weight is zero/non-zero

$$\mathbf{x}_{k} = \begin{bmatrix} x & 0 & 0 & 0 & 0 & 0 \\ x & 0 & 0 & 0 & 0 & 0 \\ 0 & x & 0 & 0 & 0 & 0 \\ x & 0 & 0 & 7 & 0 & 0 \\ x & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{x}_{k-1} + \begin{bmatrix} 0 & 0 \\ x & 0 \\ 0 & 0 \\ 0 & x \\ 0 & 0 \end{bmatrix} \mathbf{u}_{k}$$

 $X_4 = 7 = X_3$

A structured LTI system (A; B) is called structurally controllable if it is controllable for at least one of its numerical realizations (A; B)

A structured LTI system (A; B) is called strong structurally controllable if it is controllable for all of its numerical realizations (A; B)

- Structural controllability is defined using zero-forcing numbers in graphs
- Instead of Kalman and PBH test, we have graph coloring based tests
- Similar problems can be explored for structured systems

- Other types of sparsity constraints: sparsity over time, actuator use, feedback control
- New algorithms design/estimation? Do deep learning-based algorithms help?
- New applications related to networks? Graphical models?
- Sparsity + structural controllability is almost untouched

References - Our Work

- G. Joseph and C. R. Murthy, Sparsity-Constrained Linear Dynamical Systems, Springer, 2024.
- G. Joseph, Sparse Actuator Control of Discrete-Time Linear Dynamical Systems, Foundations and Trends in Systems and Control, vol. 11, no. 3, pp 186–284, 2024.
- L. Ballotta, G. Joseph, I. R. Thete, "Pointwise-Sparse Actuator Scheduling for Linear Systems with Controllability Guarantee," in IEEE Control Systems Letters, vol. 8, pp. 2361-2366, 2024
- G. Joseph, Output Controllability of a Linear Dynamical System with Sparse Controls, in IEEE Transactions on Control of Network Systems, 2022.
- G. Joseph, Controllability of a Linear System with Nonnegative Sparse Controls, IEEE Transactions on Automatic Control, vol. 67, no. 1, pp. 468-473, Jan. 2022.
- G. Joseph, B. Nettasinghe, V. Krishnamurthy, and P. K. Varshney, Controllability of Network Opinion in Erdos-Renyi Graphs using Sparse Control Inputs, in SIAM Journal on Control and Optimization, vol. 59, no. 3, pp. 2321–2345, 2021.
- G. Joseph and C. R. Murthy, Controllability of Linear Dynamical Systems Under Input Sparsity Constraints, in IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 924-931, Feb. 2021.
- K. Kondapi, C. . Sriram, G. Joseph, and C. R. Murthy, Sparse Actuator Scheduling for Discrete-Time Linear Dynamical Systems, in Proc. Indian Control Conference, Bhopal, Dec. 2024.
- G. Joseph, S. Moothedath, and J. Lin, Minimal Input Structural Modifications for Strongly Structural Controllability, in Proc. CDC, Milan, Italy, Dec. 2024.
- C. Sriram, G. Joseph, and C. R. Murthy, Control of Linear Dynamical Systems Using Sparse Inputs, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020.

Acknowledgements

- Chandra R. Murthy, IISc Bangalore
- Chandrasekhar Sriram, IISc Bangalore
- Rupam Kalyan Chakraborty, IISc Bangalore
- Pramod K. Varshney, Syracuse University
- Vikram Krishnamurthy, Cornell University
- Buddhika Nettasinghe, Cornell University
- Shana Moothedath, Iowa Sate
- Luca Ballota, TU Delft
 Irawati Thete, TU Delft

Geethu Joseph Signal Processing Systems Faculty of Electrical Engineering, Mathematics, and Computer Science Email: g.joseph@tudelft.nl