Graph Machine Learning for Financial Crime Analysis

Graphs&Data @ TU Delft February 13, 2025

Kubilay Atasu Associate Professor, Data Intensive Systems Software Technology Department

Jan 2024 – Now: TU Delft

- Research Area: Scalable Graph Learning
- Scalable Learning Systems (MSc Course)

May 2008 – Dec 2023: IBM Research – Zurich

- Research Staff Member (Senior Scientist)
- 2016 2023: Data and AI Systems
- 2008 2016: Hardware Acceleration

Enabling AI in Financial Transaction Processing

You probably used IBM Z today!

AI Toolkit for IBM Z and LinuxOne

Detecting Financial Crime in Real Time!

Credits(2019-2023)

SNSF Project 172610: Hardware-accelerated recursive programs (PI: K. Atasu)

PhD thesis by J. Blanusa, "Acceleration of graph pattern mining and applications to financial crime", Aug. 2023.

• Publications in VLDB 2020, IPDPS 2020, SPAA 2022, TOPC 2023, NeurIPS 2023, ICAIF 2024

Swiss National Science Foundation

- Winner of the 2023 Fritz Kutter Award: **Best Industry Related Doctoral Thesis** in Computer Science in Switzerland
- **IBM Outstanding Accomplishment Award** for Contributions to System Z AI Offerings (Real-time AML & Fraud Detection)

Trends in Financial Crime Analysis

Trends

Legacy rule-based systems are being replaced by agile AI-based systems Know your customer (KYC) and customer due diligence (CDD) mechanisms Follow the data instead of following the money, knowledge graphs and AI! Convergence between AML and other financial fraud detection solutions

Challenges

Detecting constantly evolving crime patterns in real-time Criminal networks crossing bank & national boundaries Building cost-efficient and sustainable AI technologies Regulatory Compliance, Trustworthy and Secure AI

Example: Phishing Fraud Detection on Ethereum Data

What type of graph is this?

This is a Directed Multigraph!

Figure 8: One of the fraudulent clusters identified in the ETH phishing dataset. The patterns that might help identify a fraudulent node are mostly 1-hop, namely in-degree, out-degree, fan-in, fan-out patterns, and 2-cycles.

Example: Money Laundering

UN estimates that 2–5% of the global GDP is laundered each year.

Example: Money Laundering

UN estimates that 2–5% of the global GDP is laundered each year.

Known Suspicious Financial Transaction Patterns

Circular trading and money laundering

Cycles

9

How Does Graph Machine Learning Help?

Trans. ID	Timestamp	Source bank ID	Source Account	Target bank ID	Target Account	Amount	Currency	Payment type
0	3 MAY 2019 12:45	1	Α	1	С	1400	USD	Cheque
1	15 MAY 2019 07:34	2	В	1	С	710	EUR	ACH
2	18 MAY 2019 16:55	3	E	1	С	950	USD	Credit card
3	1 JUN 2019 10:06	1	С	3	D	1200	CHF	Wire
4	27 JUN 2019 13:18	2	F	3	D	2300	EUR	Credit card
5	7 JUL 2019 11:14	3	D	1	Α	1100	USD	Credit card

Tabular representation of financial transactions

Pattern Discovery

Accuracy: 9% → 0.73%

Dataset size: 100 M transactions. Illicit rate: 0.3%. Model: LightGBM. Metric: minority (illicit) class F1-score .

Explaining The Predictions of Graph ML

Targ. Src. Payment Cycle Cycle Cycle Cycle Trans. Src. Targ. Tstamp Amount Curr. ID Bank Acc Bank Acc. Type len. 3 len. 4 len. 5 len. >5 7 JUL 2019 Credit USD 5 3 D 1100 0 0 0 1 Α 1 11:14 card Important graph pattens D

Highlight the patterns that have affected the prediction!

AML Accuracy Improvements using Graph ML

Synthetic AML dataset with 100M transactions

True Positive Rate (TPR) vs False Positive Rate (FPR)

rav	gra	ар		
TPR	FPR	F1	TPR	
60	94.7	9.7	60	
70	95.8	7.9	70	
80	96.7	6.4	80	
90	97.4	5.0	90	

graph teatures [%]							
	TPR	FPR	F1				
	60	15.6	70.2				
	70	23.5	73.1				
	80	40.6	68.2				
	90	72.3	42.4				

Why does accuracy matter?

- Higher TPR → less regulatory risk!
- Lower FPR → more cost savings!

Confusion Matrices

Synthetic AML dataset with 100M transactions Illicit Rate = 0.3% (300k illicit transactions)

	TPR	FPR	F1
raw features	60	94.7	9.7
graph features	60	15.6	70.2
random model	50	99.7	0.2

 $TPR = \frac{TP}{TP + FN}$ Recall = TPR

$$FPR = \frac{FP}{TP + FP}$$
 Precision = 1-FPR

Graph Machine Learning in IBM AI Toolkit for Z

Can Graph Neural Networks Help?

Why Graph Neural Networks?

- ✓ Automation No feature engineering
- No (less) domain knowledge required
- Can detect "**unestablished**" patterns
- Differentiable connect with LLMs

Provably Powerful GNNs for Directed Multigraphs

Theorem: Combination of reverse MP, ego IDs, and ports enables detection of any directed subgraph pattern.

Paper: B. Egressy et al.: Provably Powerful Graph Neural Networks for Directed Multigraphs. AAAI 2024 (Oral Presentation)

AML and Ethereum Phishing Fraud Detection Results

Model	AML Small HI	AML Small LI	AML Medium HI	AML Medium LI	ETH		
LightGBM+GFs (Altman et al. 2023)	62.86 ± 0.25	20.83 ± 1.50	59.48 ± 0.15	20.85 ± 0.38	53.20 ± 0.60		
XGBoost+GFs (Altman et al. 2023)	63.23 ± 0.17	27.30 ± 0.33	65.70 ± 0.26	28.16 ± 0.14	49.40 ± 0.54		
		Ŷ					
Using IB	M's Graph F	eature Pre	processor [1]				
Multi-GIN+EU	64.79 ± 1.22	26.88 ± 6.63	58.92 ± 1.83	16.30 ± 4.73	48.37 ± 6.62		
Multi-PNA	64.59 ± 3.60	30.65 ± 2.00	65.67 ± 2.66	33.23 ± 1.31	65.28 ± 2.89		
Multi-PNA+EU	68.16 ± 2.65	33.07 ± 2.63	66.48 ± 1.63	36.07 ± 1.17	66.58 ± 1.60		
γ							
Our Multi-GNN Models (Without Graph Features) [2]							
				/ [-]			

Multi-GNNs achieve 5-15% higher accuracy without any feature engineering! Multi-GNNs can automatically discover discriminative graph features!

[1] J. Blanusa et al.: Graph Feature Preprocessor: Real-time Extraction of Subgraph-based Features from Transaction Graphs, 2024 (Arxiv).
 [2] B. Egressy et al.: Provably Powerful Graph Neural Networks for Directed Multigraphs. AAAI 2024 (Oral Presentation).

What's Next?

Modality: Text

This is a partnership between... , which owns properties in... Its main customers are

Graph Learning on Relational Databases

For an individual

- A driver's license
- A passport

For a company

- Certified articles of incorporation
- Government-issued
 business license
- Partnership agreement
- Trust instrument

- Further information for a business or an individual
- Financial references
- Information from a consumer reporting agency or public database
- A financial statement

Image Source: https://plaid.com/resources/banking/what-is-kyc/

Modality: Table

Customer ID	Туре	Function	Bank Acct.	Credit Card

...

Financial Transaction Network Knowledge Graph

Foundation Models for AML & Financial Fraud Detection?

Challenges

Detecting constantly evolving crime patterns in real-time Criminal networks crossing bank & national boundaries Cooperation between banks as well as regulatory authorities Secure multi-party computation and decentralized learning Building cost-efficient and sustainable AI technologies Domain-specific foundation models More efficient hardware & software Regulatory Compliance, Trustworthy and Secure AI LLMs for regulatory compliance and vice versa Explainability and fairness of the predictions Open models, hybrid cloud, private fine-tuning