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Introduction
Motivation for Multigraph Neural Networks

Simple graph with node 
and edge attributes

Multigraph with node 
and edge attributes

ADAMM (Sotiropoulos et al. [1])
Multi-GNN (Egressy et al. [2])

[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach. 2023 
IEEE International Conference on Big Data.
[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 AAAI.
[3] Battaglia, Peter W., et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint 2018.

(Battaglia et al. 2018 [3]) 
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Introduction
The difference between Multigraphs and Multi-relational graphs

Multigraph with node 
and edge attributes

Multi-relational graph with 
different edge types

[4] Schlichtkrull, Michael, et al. Modeling relational data with graph convolutional networks. 2018 ESWC.
[5] Vashishth, Shikhar, et al. "Composition-based multi-relational graph convolutional networks." 2020 ICLR.

ADAMM (Sotiropoulos et al. [1])
Multi-GNN (Egressy et al. [2])

R-GCN (Schlichtkrull et al. [4])
CompGCN (Vashishth et al. [5])
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Related Work
Limitations of Existing Solutions for Multigraphs

[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural 
Network Approach. 2023 IEEE International Conference on Big Data.

1. ADAMM (Sotiropoulos et. al. [1]) Transforms multigraph into a simple graph.
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Related Work
Limitations of Existing Solutions for Multigraphs

[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural 
Network Approach. 2023 IEEE International Conference on Big Data.

1. ADAMM (Sotiropoulos et. al. [1]) Transforms multigraph into a simple graph
• Loses the original topology of the multigraph.

• Cannot produce embeddings for individual edges. Hence, not effective on edge classification.
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Related Work
Limitations of Existing Solutions for Multigraphs

Reverse MP

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN 
model.
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Related Work
Limitations of Existing Solutions for Multigraphs

Reverse MP

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence

Messages from incoming
and outgoing neighbors 

are aggregated separately

Increases expressivity as 
this allows for the 

computation of out-degree.

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN 
model.
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Related Work
Limitations of Existing Solutions for Multigraphs

Reverse MP EgoIDs

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence

The center node is marked with a distinct feature to recognize 
when a sequence of messages cycles back around it.

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN 
model.

6



13-02-2025

Related Work
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Reverse MP EgoIDs Multigraph Port Numbering

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence

Port numbers are added to distinguish
between edges from the same neighbor and 
those from different neighbors.
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Related Work
Limitations of Existing Solutions for Multigraphs

Multigraph Port Numbering

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence

Port numbers are added to distinguish
between edges from the same neighbor and 
those from different neighbors.

The assignment of port numbers is arbitrary.
• Breaks permutation equivariance.
• Inconsistent model predictions under 

arbitrary permutations of node/edges.

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN 
model.
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MEGA-GNN
Motivation

[6] Xu, Keyulu, et al. How powerful are graph neural networks?. 2019 ICLR
[7] Corso, Gabriele, et al. Principal neighborhood aggregation for graph nets. 2020 NeurIPS

• New message-passing framework for multigraphs.
• Two-stage message aggregation schema.
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GIN Layer 

[6] Xu, Keyulu, et al. How powerful are graph neural networks?. 2019 ICLR
[7] Corso, Gabriele, et al. Principal neighborhood aggregation for graph nets. 2020 NeurIPS
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• New message-passing framework for multigraphs.
• Two-stage message aggregation schema
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[6] Xu, Keyulu, et al. How powerful are graph neural networks?. 2019 ICLR
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• Two-stage message aggregation schema

• It can extend baseline GNN models, GIN (Xu et al. [6]),
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MEGA-GNN
Motivation

GIN Layer 

[6] Xu, Keyulu, et al. How powerful are graph neural networks?. 2019 ICLR
[7] Corso, Gabriele, et al. Principal neighborhood aggregation for graph nets. 2020 NeurIPS
[8] Kortvelesy, Ryan, et. al. Generalised f-mean aggregation for graph neural networks. 2023 NeurIPS

ReLU

MLP

Sum

Sum
Mean Max Min Std

Concat

ReLU

MLP

Target Node

Neighboring 
Nodes

Aggregation 
Function

• New message-passing framework for multigraphs.
• Two-stage message aggregation schema

• It can extend baseline GNN models, GIN (Xu et al. [6]),
or  PNA (Corso et al. [7]), etc. 

• GenAgg (Kortvelesy et al. [8]), learnable aggregation 
function.
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MEGA-GNN
Multigraph Message Passing with Multi-edge Aggregations

• Message passing for multigraphs with two-stage aggregation
1. Multi-edge aggregation; aggregates multi-edges on artificial nodes.
2. Node-level aggregation, aggregates messages from distinct neighbors.

We introduce 
artificial nodes.
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MEGA-GNN
Why a Two-stage Aggregation Makes Sense?

Graph Two Stage Aggregation

Multiset

Multiset

Aggregation 1

Aggregation 2

Multiset

Multiset

Aggregation 1

Single Stage Aggregation
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MEGA-GNN

• Two Stage: Multi-edges are aggregated first followed by a node-level aggregation.
• Single Stage: All edges are aggregated at once.

Graph Two Stage Aggregation

Multiset

Multiset

Aggregation 1

Aggregation 2

Multiset

Multiset

Aggregation 1

Single Stage Aggregation

Why a Two-stage Aggregation Makes Sense?
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MEGA-GNN

Graph Two Stage Aggregation

Multiset

Multiset

Aggregation 1

Aggregation 2

Multiset

Multiset

Aggregation 1

Single Stage Aggregation

Advantage of Two-stage Aggregation
Assume the baseline GNN model 

supports SUM and MAX aggregations.
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MEGA-GNN

• The two-stage aggregation captures edge statistics per neighbor.
• Example: Detects maximum sum of payments per sender.

Advantage of Two-stage Aggregation

Graph Two Stage Aggregation

Multiset

Multiset

Aggregation 1

Aggregation 2

Multiset

Multiset

Aggregation 1

Single Stage Aggregation
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MEGA-GNN
Reverse Message Passing with Multi-Edge Aggregations

• Enhances model expressivity by handling 
incoming and outgoing neighbors separately.

• Enables computation of both in-degree and 
out-degree, unlike undirected or single-
direction models.
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MEGA-GNN
Reverse Message Passing with Multi-Edge Aggregations

• Messages from incoming and outgoing neighbors are separately aggregated.

Reversed edges 
are also added to 
the Graph
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MEGA-GNN
Properties

Permutation Equivariance:
• As a message passing based model, MEGA-GNN is permutation equivariant.
Universality:
• If there is a strict total order on the edges, then MEGA-GNN is universal.
• Financial transaction networks exhibit this property, e.g., in the form of timestamps.
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MEGA-GNN
Properties

Permutation Equivariance:
• As a message passing based model, MEGA-GNN is permutation equivariant.
Universality:
• If there is a strict total order on the edges, then MEGA-GNN is universal.
• Financial transaction networks exhibit this property, e.g., in the form of timestamps.

How about Multi-GNN (Egressy et. al. [2])?
• Not permutation equivariant when the port numbering is arbitrary.
• Multi-GNN is always universal.

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence 13



13-02-2025

• Introduction
• Motivation for Multigraph Neural Networks

• Related Work
• Limitations of Existing Solutions for Multigraphs.

• MEGA-GNN: Our Proposed Solution
• Motivation

• Multigraph Message Passing with Multi-edge Aggregations

• Why does a Two-stage Aggregation Make Sense?

• Bi-directional Message Passing

• Properties

• Experiments & Results
• Conclusion 

14



13-02-2025

Experiments & Results
Datasets
1. Anti-Money Laundering (AML)

• Task: Edge classification. 

2. Ethereum Phishing Transaction (ETH)
• Task: Node classification. 
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Experiments & Results
AML Edge Classification Results

• On average, MEGA-GNN improves minority-class F1 scores by 4.75% on HI 
datasets and 6.77% on LI datasets compared to Multi-GNN (Egressy et al. [2]).

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence
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Experiments & Results
ETH Node Classification Results

[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural 
Network Approach. 2023 IEEE International Conference on Big Data.

• Compared to the ADAMM (Sotiropoulos et. al. [1]), our MEGA-GNN variants consistently 
deliver over 20% higher performance across base architectures.
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Experiments & Results
ETH Node Classification Results

• Compared to the ADAMM (Sotiropoulos et. al. [1]), our MEGA-GNN variants consistently 
deliver over 20% higher performance across base architectures.

[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural 
Network Approach. 2023 IEEE International Conference on Big Data.

ADAMM 
(Sotiropoulos et. al. [1])

17



13-02-2025

Experiments & Results
ETH Node Classification Results

• Compared to the Multi (Egressy et al. [2]), our MEGA variants improve the GIN and 
GenAgg models and match the performance of PNA.

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence
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Experiments & Results

• Minimal computational overhead 
• Boosts inference speed by disabling reverse message passing.

Computational Overhead 

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence
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Conclusion
• We addressed the shortcomings of the existing methods.

• Preserve original topology

• Permutation Equivariance

• AML Datasets: 
• Improvements up to +10.93% F1 (minority-class) over Multi-GNN(Egressy et al. [2]). 

• ETH Dataset
• +20% F1 over ADAMM (Sotiropoulos et. al. [1]), matching Multi-GNN (Egressy et al. [2]).

[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural 
Network Approach. 2023 IEEE International Conference on Big Data.
[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference on 
Artificial Intelligence 20



Thank you
The pre-print of the MEGA-GNN paper can be found on

https://arxiv.org/pdf/2412.00241
13-02-2025

https://arxiv.org/pdf/2412.00241
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Experiments & Results
Ablation Study

[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 
on Artificial Intelligence

• MEGA-GNN outperforms most 
baselines using only two-stage 
aggregation, proving its strength 
without bi-directional MP or ego 
IDs.

21
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Introduction
Motivation: Multigraphs

Multigraph Multi-relational 
Graph

Hypergraph

Figures are taken from: Thomas, Josephine M., et al. "Graph neural networks designed for different graph types: A survey." 22
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Introduction
Motivation: Multigraphs

Feature Multigraphs Multi-Relational Graphs Hypergraphs

Edge Structure Multiple edges between the 
same two nodes Heterogeneous Edge Types Hyperedges connecting 

multiple nodes

Edge Features Each edge has independent 
features

Edge types determine relation 
semantics

Features assigned to 
hyperedges

Example
Financial transactions 
(multiple payments between 
accounts)

Knowledge graphs (e.g., "Alice 
works for CompanyX")

Co-authorship networks (one 
paper connecting multiple 
authors)

GNN Implication Requires multi-edge 
aggregation

Requires different rules for 
different edge types

Requires hyperedge 
aggregation
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