Advances in Multigraph Neural Networks

Graphs&Data@TUDelft

13-02-2025

H. Çağrı Bilgi

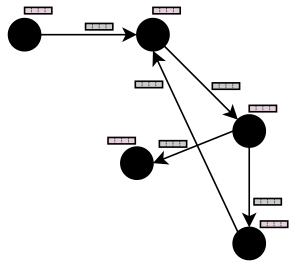
Supervised by Assoc. Prof. Kubilay Atasu

Outline

Introduction

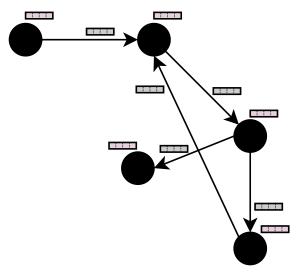
- Motivation for Multigraph Neural Networks
- Related Work
 - Limitations of Existing Solutions for Multigraphs.
- MEGA-GNN: Our Proposed Solution
 - Motivation
 - Multigraph Message Passing with Multi-edge Aggregations
 - Why does a Two-stage Aggregation Make Sense?
 - Bi-directional Message Passing
 - Properties
- Experiments & Results
- Conclusion
 ŤUDelft

Motivation for Multigraph Neural Networks

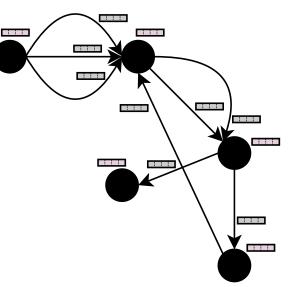


Simple graph with node and edge attributes

Motivation for Multigraph Neural Networks

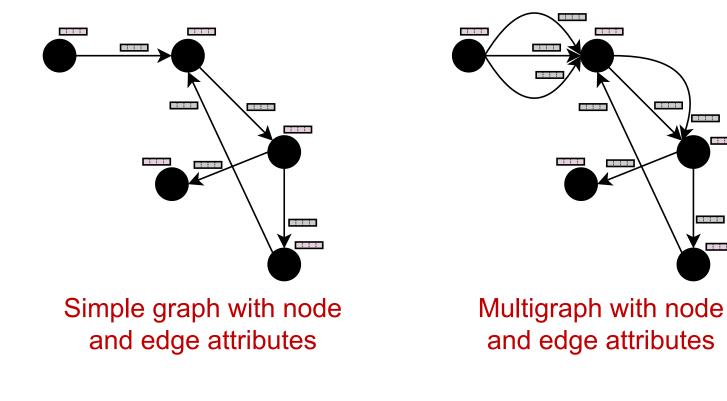


Simple graph with node and edge attributes



Multigraph with node and edge attributes

Motivation for Multigraph Neural Networks



(Battaglia et al. 2018 [3])

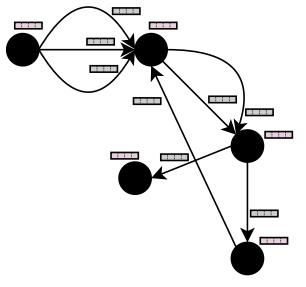
ADAMM (Sotiropoulos et al. [1]) Multi-GNN (Egressy et al. [2])

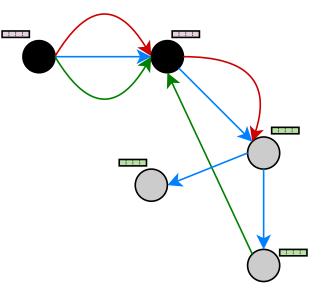
[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach. 2023 IEEE International Conference on Big Data. [2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 AAAI. 13-02-2025 3

....

[3] Battaglia, Peter W., et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint 2018.

Motivation for Multigraph Neural Networks



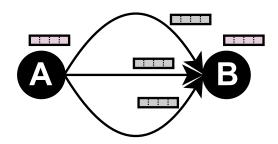


Multigraph with node and edge attributes

Multi-relational graph with different edge types

The difference between Multigraphs and Multi-relational graphs

Trans. ID	Timestamp	Source bank ID	Source Account	Target bank ID	Target Account	Amount	Currency	Payment type
0	5/3/19 12:45	1	А	2	В	1400	USD	Cheque
1	5/15/19 7:34	1	А	2	В	710	EUR	ACH
2	5/18/19 16:55	1	Α	2	В	950	CHF	Credit card
3	6/1/19 10:06	2	С	3	D	1200	CHF	Wire



Multigraph with node and edge attributes

EUR CHF

Multi-relational graph with different edge types

ADAMM (Sotiropoulos et al. [1]) Multi-GNN (Egressy et al. [2]) R-GCN (Schlichtkrull et al. [4]) CompGCN (Vashishth et al. [5])

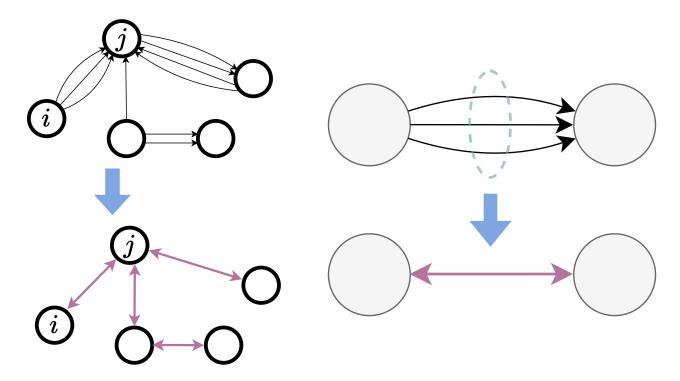
[4] Schlichtkrull, Michael, et al. Modeling relational data with graph convolutional networks. 2018 ESWC.[5] Vashishth, Shikhar, et al. "Composition-based multi-relational graph convolutional networks." 2020 ICLR.

Limitations of Existing Solutions for Multigraphs

1. ADAMM (Sotiropoulos et. al. [1]) Transforms multigraph into a simple graph.

Limitations of Existing Solutions for Multigraphs

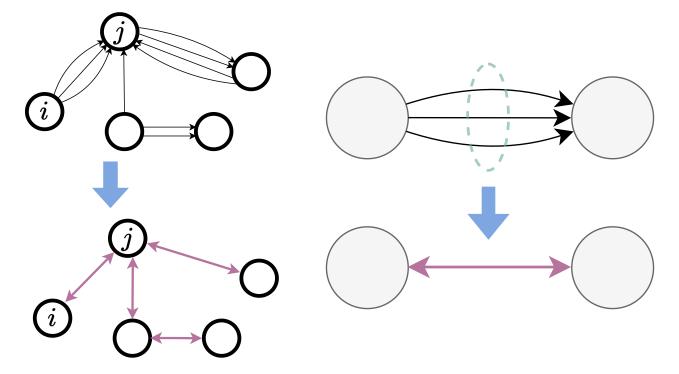
1. ADAMM (Sotiropoulos et. al. [1]) Transforms multigraph into a simple graph.



[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach. 2023 IEEE International Conference on Big Data.

Limitations of Existing Solutions for Multigraphs

- 1. ADAMM (Sotiropoulos et. al. [1]) Transforms multigraph into a simple graph
 - Loses the original topology of the multigraph.
 - Cannot produce embeddings for individual edges. Hence, not effective on edge classification.

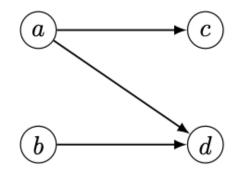


t [1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach. 2023 IEEE International Conference on Big Data.

Limitations of Existing Solutions for Multigraphs

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN model.

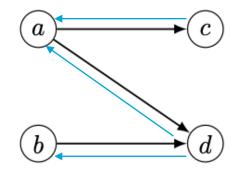
Reverse MP



Limitations of Existing Solutions for Multigraphs

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN model.

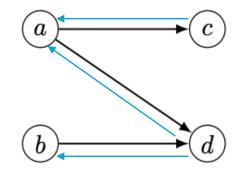
Reverse MP



Limitations of Existing Solutions for Multigraphs

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN model.

Reverse MP

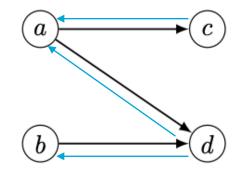


Messages from **incoming** and **outgoing** neighbors are aggregated <u>separately</u>

Limitations of Existing Solutions for Multigraphs

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN model.

Reverse MP



Messages from **incoming** and **outgoing** neighbors are aggregated <u>separately</u>

Increases expressivity as this allows for the computation of out-degree.

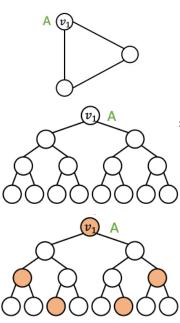
Limitations of Existing Solutions for Multigraphs

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN model.

Reverse MP



EgolDs

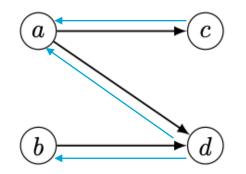


The **center node** is marked with a distinct feature to recognize when a sequence of messages cycles back around it.

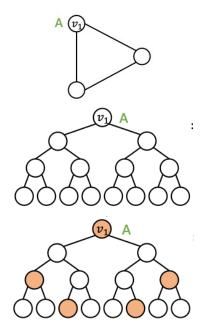
Limitations of Existing Solutions for Multigraphs

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN model.

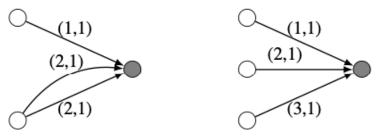
Reverse MP



EgolDs



Multigraph Port Numbering



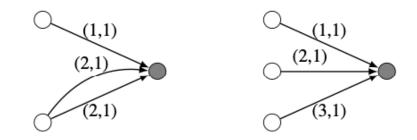
Port numbers are added to **distinguish** between edges from the <u>same neighbor</u> and those from <u>different neighbors</u>.

Limitations of Existing Solutions for Multigraphs

2. Multi-GNN (Egressy et al. [2]) Introduce three multigraph adaptations on the base GNN model.

The assignment of port numbers is arbitrary.

- Breaks permutation equivariance.
- <u>Inconsistent</u> model predictions under arbitrary permutations of node/edges.



Multigraph Port Numbering

Port numbers are added to **distinguish** between edges from the <u>same neighbor</u> and those from <u>different neighbors</u>.

- Introduction
 - Motivation for Multigraph Neural Networks
- Related Work
 - Limitations of Existing Solutions for Multigraphs.

MEGA-GNN: Our Proposed Solution

- Motivation
- Multigraph Message Passing with Multi-edge Aggregations
- Why does a Two-stage Aggregation Make Sense?
- Bi-directional Message Passing
- Properties
- Experiments & Results

Conclusion **Ť**UDelft

Motivation

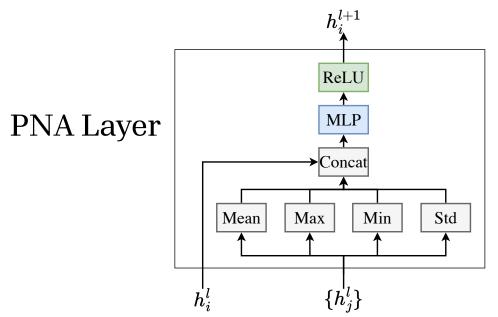
- New message-passing framework for multigraphs.
 - Two-stage message aggregation schema.

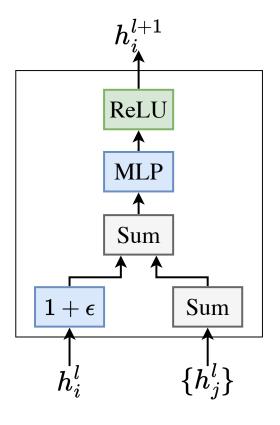
Motivation

- New message-passing framework for multigraphs.
 - Two-stage message aggregation schema.
- It can extend baseline GNN models, GIN (Xu et al. [6]), or PNA (Corso et al. [7]), etc.

Motivation

- New message-passing framework for multigraphs.
 - Two-stage message aggregation schema
- It can extend baseline GNN models, GIN (Xu et al. [6]), or PNA (Corso et al. [7]), etc.

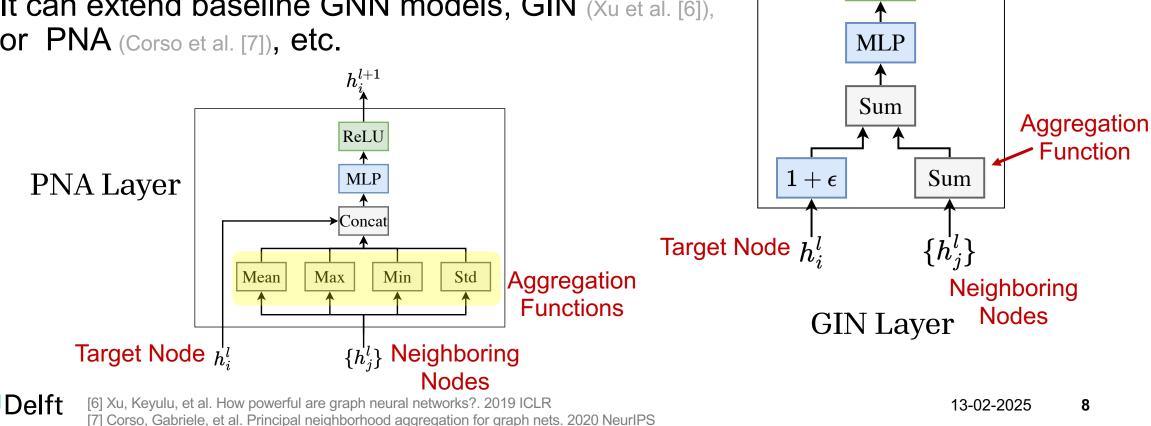




GIN Layer

Motivation

- New message-passing framework for multigraphs.
 - Two-stage message aggregation schema
- It can extend baseline GNN models, GIN (Xu et al. [6]), or PNA (Corso et al. [7]), etc.

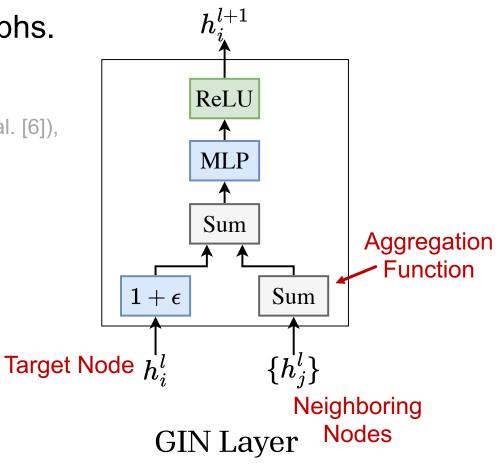


 h^{l+1}_{\cdot}

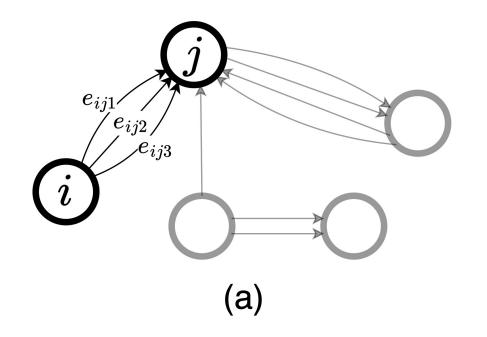
ReLU

Motivation

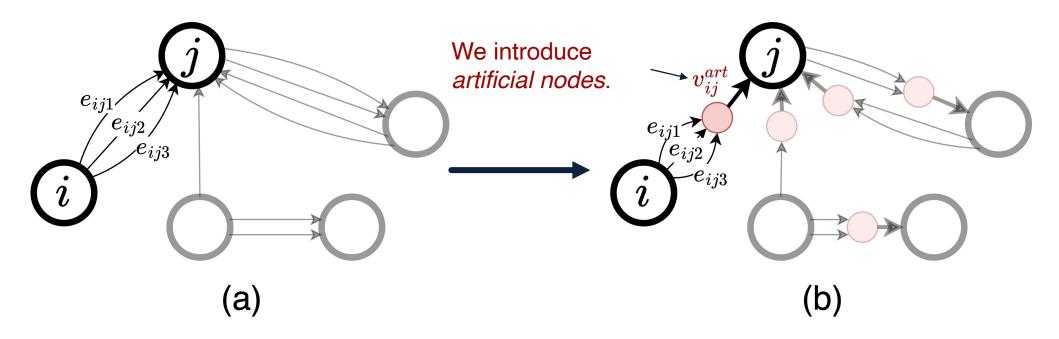
- New message-passing framework for multigraphs.
 - Two-stage message aggregation schema
- It can extend baseline GNN models, GIN (Xu et al. [6]), or PNA (Corso et al. [7]), etc.
- GenAgg (Kortvelesy et al. [8]), learnable aggregation function.



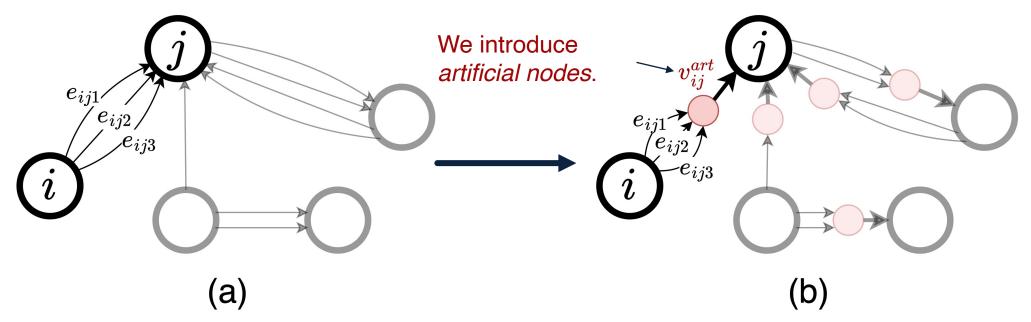
Multigraph Message Passing with Multi-edge Aggregations



Multigraph Message Passing with Multi-edge Aggregations

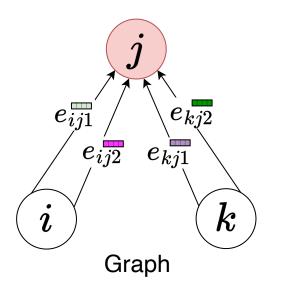


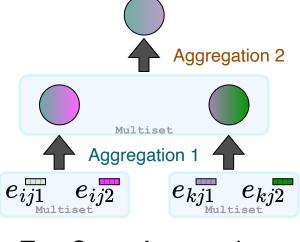
Multigraph Message Passing with Multi-edge Aggregations

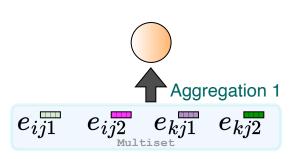


- Message passing for multigraphs with two-stage aggregation
 - 1. Multi-edge aggregation; aggregates multi-edges on artificial nodes.
 - 2. Node-level aggregation, aggregates messages from distinct neighbors.

Why a Two-stage Aggregation Makes Sense?

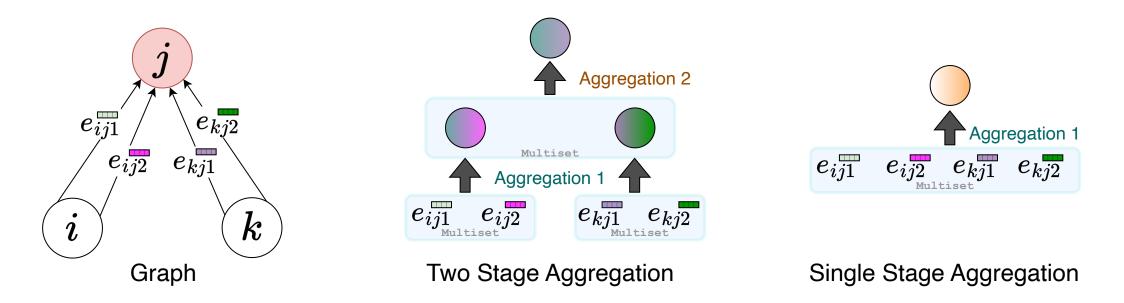






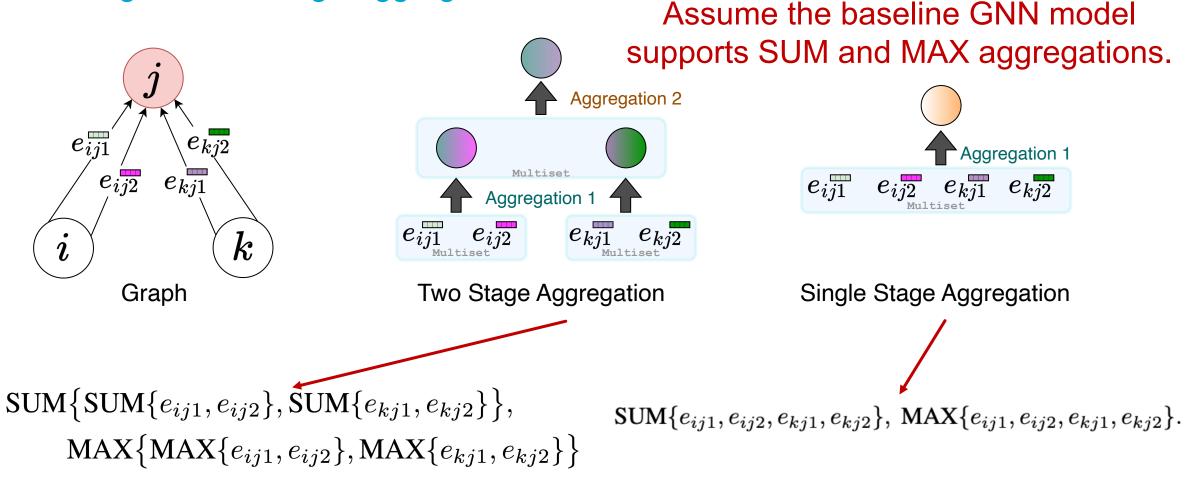
Single Stage Aggregation

Why a Two-stage Aggregation Makes Sense?

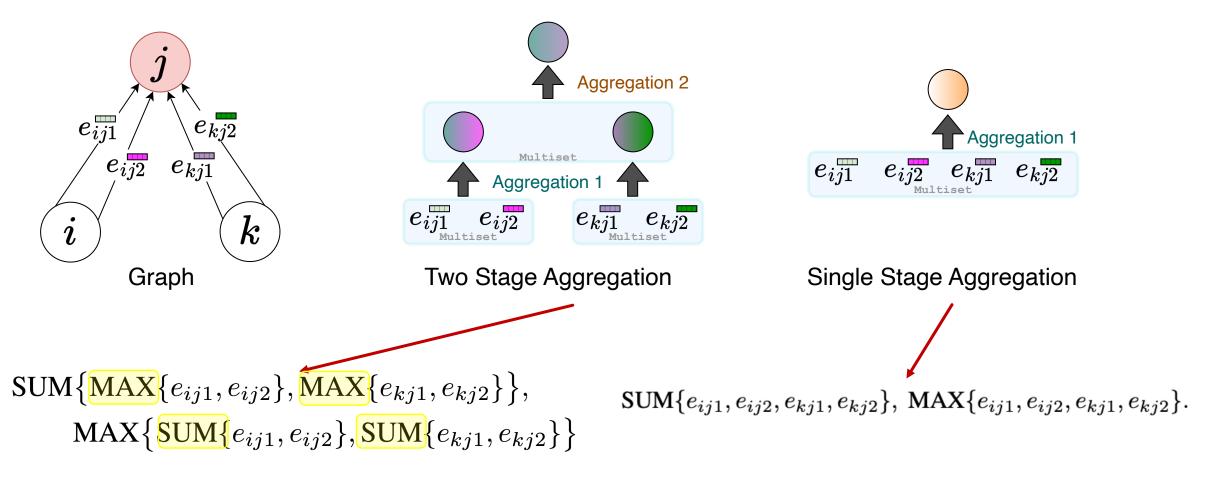


- **Two Stage:** Multi-edges are aggregated first followed by a node-level aggregation.
- **Single Stage:** All edges are aggregated at once.

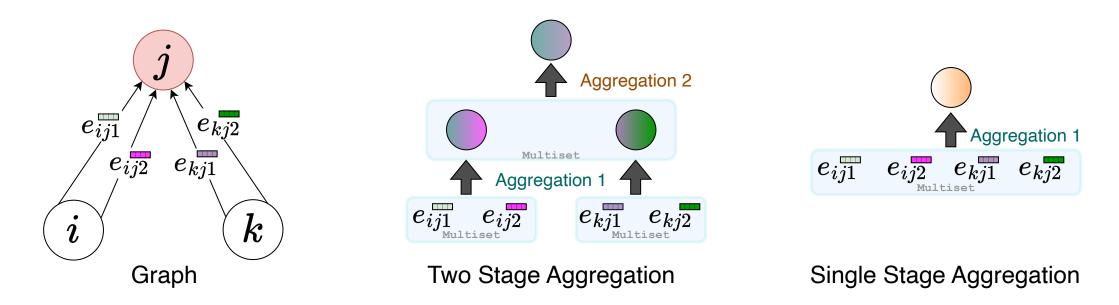
Advantage of Two-stage Aggregation



Advantage of Two-stage Aggregation

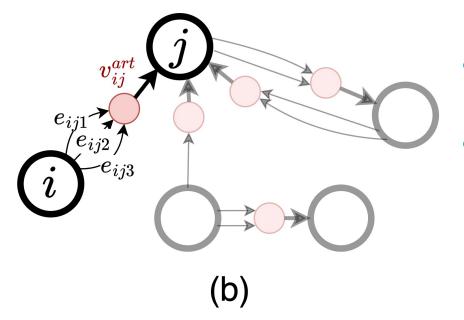


Advantage of Two-stage Aggregation



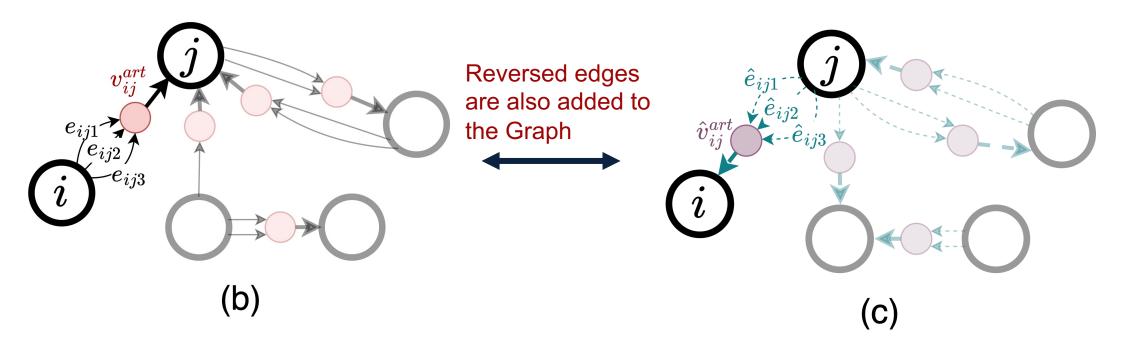
- The two-stage aggregation captures edge statistics per neighbor.
 - **Example:** Detects maximum sum of payments per sender.

Reverse Message Passing with Multi-Edge Aggregations

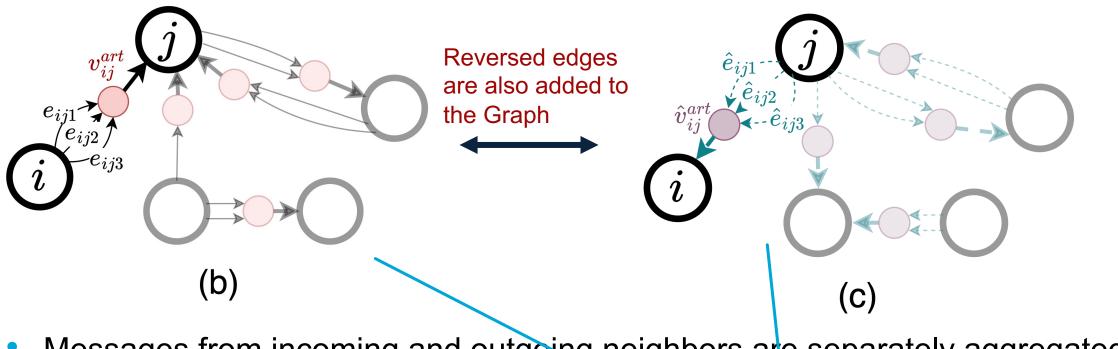


- <u>Enhances</u> model expressivity by handling incoming and outgoing neighbors separately.
 - Enables computation of both **in-degree** and **out-degree**, unlike undirected or singledirection models.

Reverse Message Passing with Multi-Edge Aggregations



Reverse Message Passing with Multi-Edge Aggregations



Messages from incoming and outgoing neighbors are separately aggregated.

$$\mathbf{x}_{j}^{(l)} = g_{v}^{(l-1)} \left(\mathbf{x}_{j}^{(l-1)}, \mathbf{a}_{j}^{(l-1)}, \hat{\mathbf{a}}_{j}^{(l-1)} \right)$$

Properties

Permutation Equivariance:

- As a message passing based model, MEGA-GNN is permutation equivariant. **Universality:**
- If there is a strict total order on the edges, then MEGA-GNN is universal.
 - Financial transaction networks exhibit this property, e.g., in the form of timestamps.

Properties

Permutation Equivariance:

- As a message passing based model, MEGA-GNN is permutation equivariant. **Universality:**
- If there is a strict total order on the edges, then MEGA-GNN is universal.
 - Financial transaction networks exhibit this property, e.g., in the form of timestamps.

How about Multi-GNN (Egressy et. al. [2])?

- Not permutation equivariant when the port numbering is arbitrary.
- Multi-GNN is always universal.

- Introduction
 - Motivation for Multigraph Neural Networks
- Related Work
 - Limitations of Existing Solutions for Multigraphs.
- MEGA-GNN: Our Proposed Solution
 - Motivation
 - Multigraph Message Passing with Multi-edge Aggregations
 - Why does a Two-stage Aggregation Make Sense?
 - Bi-directional Message Passing
 - Properties
- Experiments & Results

Datasets

- 1. Anti-Money Laundering (AML)
 - **Task:** Edge classification.
- 2. Ethereum Phishing Transaction (ETH)
 - Task: Node classification.

Dataset	# Nodes	# Edges	Illicit Rate	Split [%]
AML Small HI	515,088	5,078,345	0.102%	64/19/17
AML Small LI	705,907	6,924,049	0.051%	64/19/17
AML Medium HI	2,077,023	31,898,238	0.110%	61/17/22
AML Medium LI	2,032,095	31,251,483	0.051%	61/17/22
AML Large HI	2,116,168	179,702,229	0.124%	60/20/20
AML Large LI	2,070,980	176,066,557	0.057%	60/20/20
ETH	2,973,489	13,551,303	0.04%	65/15/20

Datasets

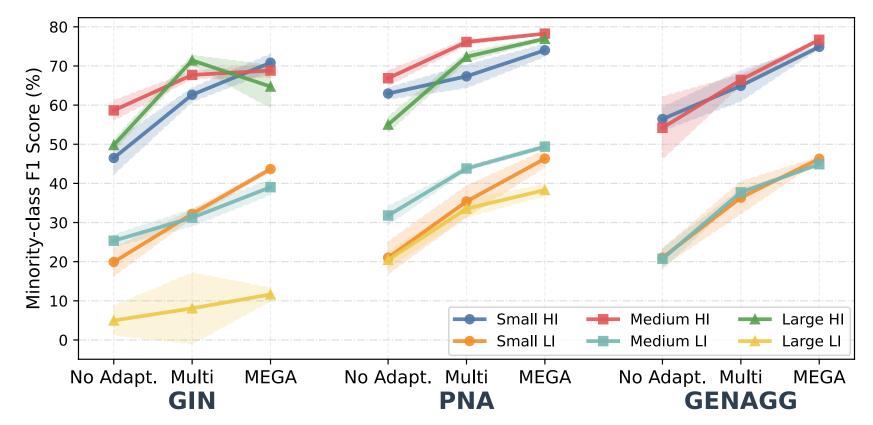
- 1. Anti-Money Laundering (AML)
 - **Task:** Edge classification.
- 2. Ethereum Phishing Transaction (ETH)
 - Task: Node classification.

Dataset	# Nodes	# Edges	Illicit Rate	Split [%]
AML Small HI	515,088	5,078,345	0.102%	64/19/17
AML Small LI	705,907	6,924,049	0.051%	64/19/17
AML Medium HI	2,077,023	31,898,238	0.110%	61/17/22
AML Medium LI	2,032,095	31,251,483	0.051%	61/17/22
AML Large HI	2,116,168	179,702,229	0.124%	60/20/20
AML Large LI	2,070,980	176,066,557	0.057%	60/20/20
ETH	2,973,489	13,551,303	0.04%	65/15/20

Baselines

Multigraph Adaptations	GIN	PNA	GenAgg
No adaptations	 ✓ 	\checkmark	\checkmark
Multi (Egressy et al., 2024)	\checkmark	\checkmark	\checkmark
ADAMM (Sotiropoulos et al., 2023)	\checkmark	\checkmark	\checkmark
MEGA (ours)	\checkmark	\checkmark	\checkmark

AML Edge Classification Results

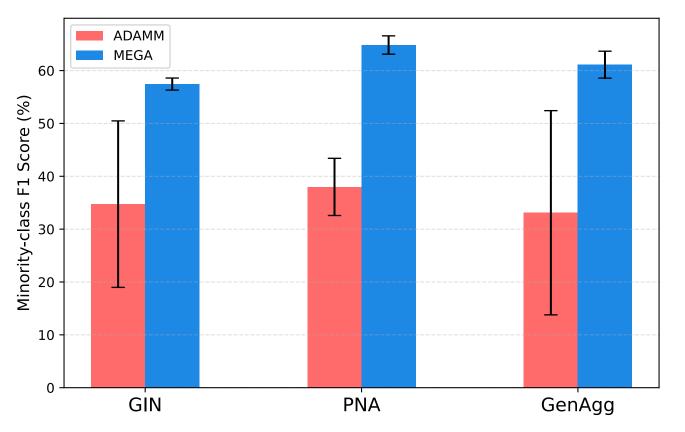


• On average, MEGA-GNN improves minority-class F1 scores by 4.75% on HI datasets and 6.77% on LI datasets compared to Multi-GNN (Egressy et al. [2]).

TUDelft [2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference 13-02-2025 16 on Artificial Intelligence

ETH Node Classification Results

A

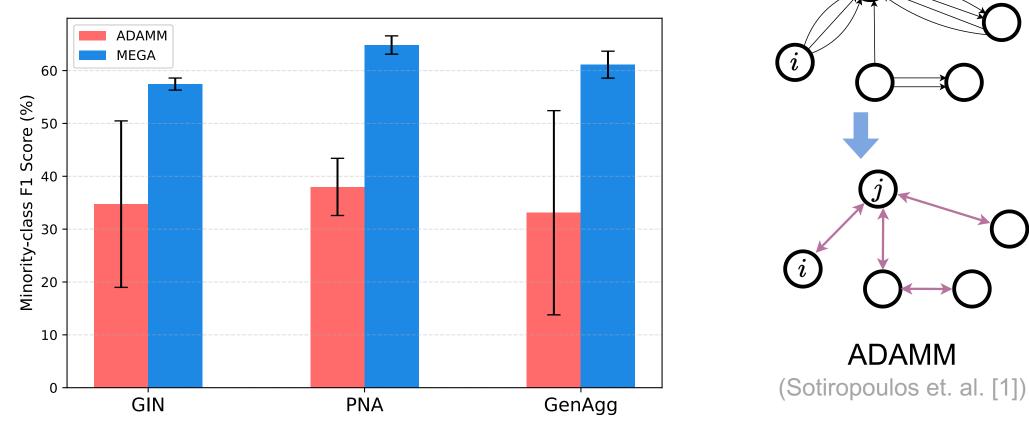


• Compared to the ADAMM (Sotiropoulos et. al. [1]), our MEGA-GNN variants consistently deliver over 20% higher performance across base architectures.

TUDelft [1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural
 13-02-2025
 17

 Network Approach. 2023 IEEE International Conference on Big Data.
 13-02-2025
 17

ETH Node Classification Results

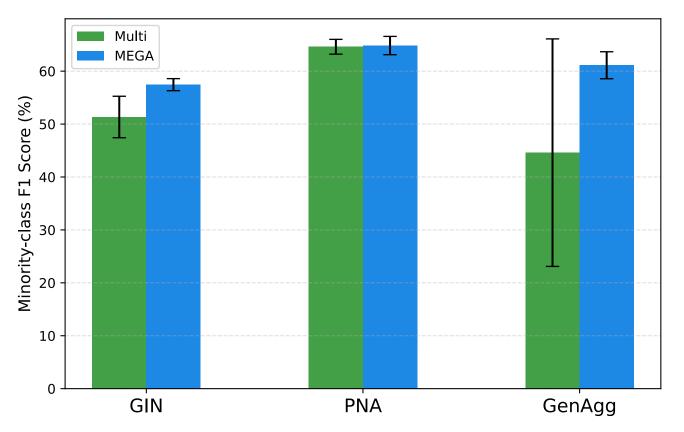


Compared to the ADAMM (Sotiropoulos et. al. [1]), our MEGA-GNN variants consistently deliver over 20% higher performance across base architectures.

ADAMM

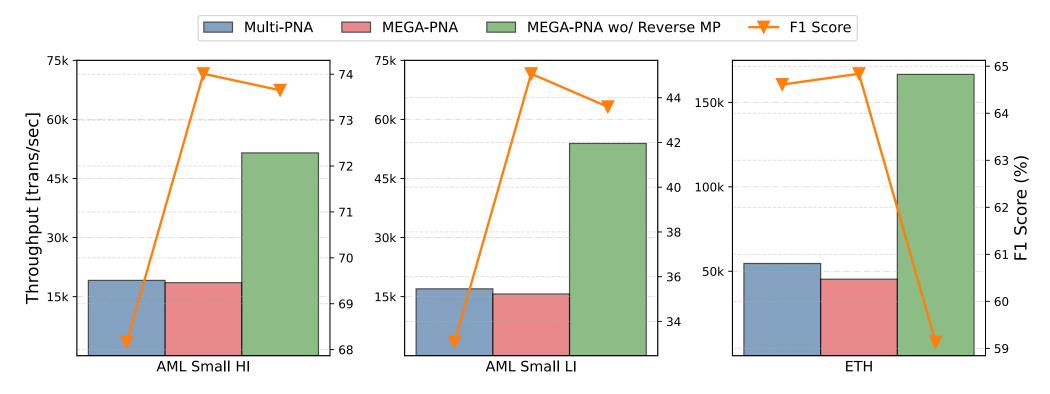
ETH Node Classification Results

A



• Compared to the Multi (Egressy et al. [2]), our MEGA variants improve the GIN and GenAgg models and match the performance of PNA.

Computational Overhead



- Minimal computational overhead
- Boosts inference speed by disabling reverse message passing.

Conclusion

- We addressed the shortcomings of the existing methods.
 - Preserve original topology
 - Permutation Equivariance

• AML Datasets:

• Improvements up to +10.93% F1 (minority-class) over Multi-GNN(Egressy et al. [2]).

ETH Dataset

• +20% F1 over ADAMM (Sotiropoulos et. al. [1]), matching Multi-GNN (Egressy et al. [2]).

[1] Sotiropoulos K, Zhao L, Liang PJ, Akoglu L. ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach. 2023 IEEE International Conference on Big Data.
[2] Egressy, B., et. al. Provably Powerful Graph Neural Networks for Directed Multigraphs. 2024 In Proceedings of the AAAI Conference on Artificial Intelligence

Thank you

The pre-print of the MEGA-GNN paper can be found on https://arxiv.org/pdf/2412.00241

13-02-2025

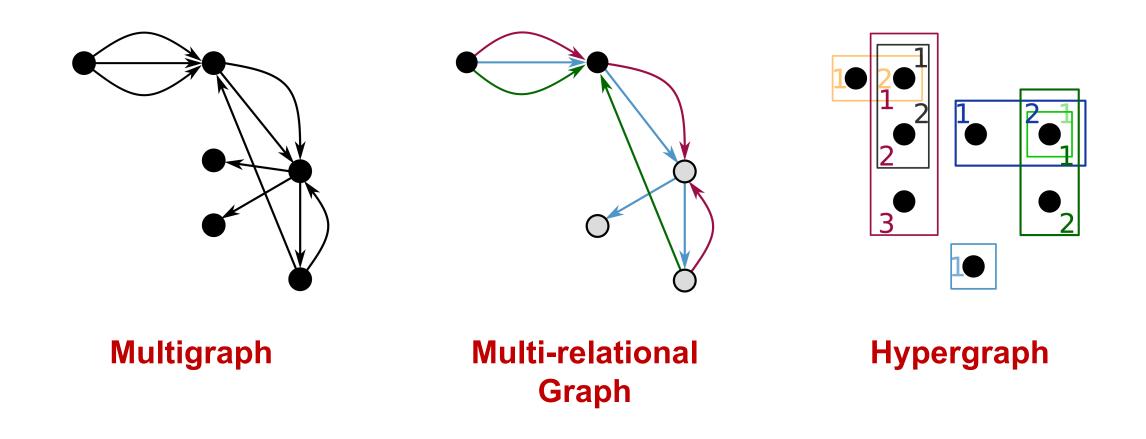
Ablation Study

 MEGA-GNN outperforms most baselines <u>using only two-stage</u> <u>aggregation</u>, proving its strength without bi-directional MP or ego IDs.

Ablation	AML Small HI	AML Small LI	ETH
MEGA-GIN w/ Ego-IDs & Bi-directional MP	70.83 ± 2.18	43.66 ± 0.54	55.19 ± 2.33
MEGA-GIN w/ Bi-directional MP	$\overline{72.50\pm3.26}$	41.67 ± 1.51	57.45 ± 1.14
MEGA-GIN w/ Ego-IDs	69.59 ± 1.07	$\overline{40.79\pm1.91}$	42.82 ± 3.34
MEGA-GIN (Unidirectional MP)	69.98 ± 2.02	41.45 ± 2.13	43.56 ± 2.67
MEGA-PNA w/ Ego-IDs & Bi-directional MP	74.01 ± 1.55	46.32 ± 2.07	$\underline{60.02\pm5.10}$
MEGA-PNA w/ Bi-directional MP	74.98 ± 1.59	$\underline{45.36 \pm 1.18}$	64.84 ± 1.73
MEGA-PNA w/ Ego-IDs	73.61 ± 0.55	44.47 ± 1.53	57.62 ± 1.23
MEGA-PNA (Unidirectional MP)	73.65 ± 0.36	43.77 ± 1.53	59.13 ± 0.51

Introduction

Motivation: Multigraphs



TUDelft Figures are taken from: Thomas, Josephine M., et al. "Graph neural networks designed for different graph types: A survey."

Introduction

Motivation: Multigraphs

Feature	Multigraphs	Multi-Relational Graphs	Hypergraphs
Edge Structure	Multiple edges between the same two nodes	Heterogeneous Edge Types	Hyperedges connecting multiple nodes
Edge Features	Each edge has independent features	Edge types determine relation semantics	Features assigned to hyperedges
Example	Financial transactions (multiple payments between accounts)	Knowledge graphs (e.g., "Alice works for CompanyX")	Co-authorship networks (one paper connecting multiple authors)
GNN Implication	Requires multi-edge aggregation	Requires different rules for different edge types	Requires hyperedge aggregation

