Higher-Order Temporal Network Prediction and Interpretation

Bart Peters (TUD)

In collaboration with Huijuan Wang (TUD) & Alberto Ceria (LEI)

Graphs & Data Seminar 13/02/2025

Temporal networks

• <u>Pairwise</u> temporal network G

Sequence of network snapshots: $G = \{G_1, G_2, G_3, G_4\}$ with $G_t = (V, E_t)$

V =set of nodes

 $E_t = \text{set of } \underline{\text{links}}$ (interactions) at t

Temporal networks

- <u>Pairwise</u> temporal network G
- Two representations

Sequence of network snapshots: $G = \{G_1, G_2, G_3, G_4\}$ with $G_t = (V, E_t)$ Aggregated network G

V = set of nodes $E_t = \text{set of } \underline{\text{links}}$ (interactions) at t

Activity of <u>link</u> *i*: $x_i = \{x_i(1), x_i(2), x_i(3), x_i(4)\}$

Higher-order temporal networks

• <u>Higher-order</u> temporal network *H*

Sequence of network snapshots: $H = \{H_1, H_2, H_3, H_4\}$ with $H_t = (V, \mathcal{E}_t)$

V = set of nodes

 $\mathcal{E}_t = \text{set of } \underline{\text{hyperlinks}}$ (interactions) at t

Higher-order temporal networks

- <u>Higher-order</u> temporal network *H*
- Two representations

Sequence of network snapshots: $H = \{H_1, H_2, H_3, H_4\}$ with $H_t = (V, \mathcal{E}_t)$ Aggregated network H

V =set of nodes

 $\mathcal{E}_t = \text{set of } \underline{\text{hyperlinks}}$ (interactions) at t

Activity of <u>hyperlink</u> *i*: $x_i = \{x_i(1), x_i(2), x_i(3), x_i(4)\}$

Goal

- Predict future hyperlink activity
- Understand prediction mechanism

Memory in HOTNs: Jaccard similarity

• Similarity of network topology over time

•
$$J_d(\Delta) = \frac{\left|\mathcal{E}_t^d \cap \mathcal{E}_{t+\Delta}^d\right|}{\left|\mathcal{E}_t^d \cup \mathcal{E}_{t+\Delta}^d\right|}$$

Memory in HOTNs: auto-correlation

- Similarity of hyperlink activity over time
 - Pearson correlation coefficient between $\{x_i(t)\}_{t=1,2,...,T-\Delta}$ and $\{x_i(t)\}_{t=\Delta+1,\Delta+2,...,T}$

Memory in HOTNs

Prediction: self-driven model

• Recent events (interactions) have more influence than past events

•
$$w_i(t+1) = \sum_{k=t-L+1}^{k=t} x_i(k) e^{-\tau(t-k)}$$

• Only uses past activity of target hyperlink *i*

- Definition: For a target hyperlink h, a neighboring hyperlink h' is called a type ϕ -neighbor of h, with $\phi = (dd'o)$, where:
 - d = order of h
 - d' = order of h'
 - *o* = #overlapping nodes

- Definition: For a target hyperlink h, a neighboring hyperlink h' is called a type ϕ -neighbor of h, with $\phi = (dd'o)$, where:
 - d = order of h
 - d' = order of h'
 - *o* = #overlapping nodes

- Definition: For a target hyperlink h, a neighboring hyperlink h' is called a type ϕ -neighbor of h, with $\phi = (dd'o)$, where:
 - d = order of h
 - d' = order of h'
 - *o* = #overlapping nodes

- Definition: For a target hyperlink h, a neighboring hyperlink h' is called a type ϕ -neighbor of h, with $\phi = (dd'o)$, where:
 - d = order of h
 - d' = order of h'
 - *o* = #overlapping nodes
- Sub-hyperlinks: $h' \subset h$

- Definition: For a target hyperlink h, a neighboring hyperlink h' is called a type ϕ -neighbor of h, with $\phi = (dd'o)$, where:
 - d = order of h
 - d' = order of h'
 - *o* = #overlapping nodes
- Sub-hyperlinks: $h' \subset h$
- Super-hyperlinks: $h' \supset h$

- Definition: For a target hyperlink h, a neighboring hyperlink h' is called a type ϕ -neighbor of h, with $\phi = (dd'o)$, where:
 - d = order of h
 - d' = order of h'
 - *o* = #overlapping nodes
- Sub-hyperlinks: $h' \subset h$
- Super-hyperlinks: $h' \supset h$

• All possible types ϕ for hyperlink order $d \in [2,3,4]$:

order d	ϕ					
	target	sub-hyperlinks	sup-hyperlinks	other		
2	222	-	232, 242	221, 231, 241		
3	333	322	343	321,331,332,341,342		
4	444	422, 433	-	421, 431, 432, 441, 442, 443		

Memory in HOTNs: target and neighbors

- Similarity of target and neighbor activity over time
 - Pearson correlation coefficient between target's activity and average 'lagged' activity of neighbors

″uDelft

Prediction: general model

• Sum over past activations of target and neighbors

•
$$w_i(t+1) = \sum_{\phi \in \Phi^d} c_\phi y_i^\phi(t) + c_d$$

 $y_i^\phi(t) = \sum_{k=t-L+1}^{k=t} \sum_{j \in S_i^\phi} x_j(k) e^{-\tau(t-k)}$

• Coefficients learned using Lasso regression

Prediction: general model

• Sum over past activations of target and neighbors

•
$$w_i(t+1) = \sum_{\phi \in \Phi^d} c_\phi y_i^\phi(t) + c_d$$

 $y_i^\phi(t) = \sum_{k=t-L+1}^{k=t} \sum_{j \in S_i^\phi} x_j(k) e^{-\tau(t-k)}$

• Coefficients learned using Lasso regression

 Coefficients + memory analysis: target is most important, followed by sub- & super-hyperlinks

Prediction: refined model

• Sum over past activations of target and sub- & super-hyperlinks

•
$$w_i(t+1) = \sum_{\phi \in \Phi^d} c_\phi y_i^\phi(t) + c_d$$

 $y_i^\phi(t) = \sum_{k=t-L+1}^{k=t} \sum_{j \in S_i^\phi} x_j(k) e^{-\tau(t-k)}$

General model

	I I					
order d	ϕ					
	target	sub-hyperlinks	sup-hyperlinks	other		
2	222	-	232, 242	221, 231, 241		
3	333	322	343	321, 331, 332, 341, 342		
4	444	422, 433	-	421, 431, 432, 441, 442, 443		
		γ				

Refined model

Prediction: results

• Pairwise self-driven model as baseline:

$$w_i(t+1) = \sum_{k=t-L+1}^{k=t} x_i(k) e^{-\tau(t-k)}$$

• General and refined model:

$$w_{i}(t+1) = \sum_{\phi \in \Phi^{d}} c_{\phi} y_{i}^{\phi}(t) + c_{d}$$
$$y_{i}^{\phi}(t) = \sum_{k=t-L+1}^{k=t} \sum_{j \in S_{i}^{\phi}} x_{j}(k) e^{-\tau(t-k)}$$

Conclusions

- General and refined model outperform
 baseline models
- Past activity of the target itself is the most important factor in forecasting its activity, followed by the past activity of its sub- & super-hyperlinks

