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Temporal networks

• Pairwise temporal network 𝐺
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Sequence of network snapshots: 
𝐺 = 𝐺1, 𝐺2, 𝐺3, 𝐺4 with 𝐺𝑡 = (𝑉, 𝐸𝑡)

𝑉 = set of nodes

𝐸𝑡 = set of links (interactions) at 𝑡



Temporal networks

• Pairwise temporal network 𝐺

• Two representations
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Aggregated network 𝐺

Activity of link 𝑖: 
𝒙𝑖 = 𝑥𝑖 1 , 𝑥𝑖 2 , 𝑥𝑖 3 , 𝑥𝑖 4

Sequence of network snapshots: 
𝐺 = 𝐺1, 𝐺2, 𝐺3, 𝐺4 with 𝐺𝑡 = (𝑉, 𝐸𝑡)

𝑉 = set of nodes

𝐸𝑡 = set of links (interactions) at 𝑡



Higher-order temporal networks

• Higher-order temporal network 𝐻
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𝐻 = 𝐻1, 𝐻2, 𝐻3, 𝐻4 with 𝐻𝑡 = (𝑉, ℰ𝑡)

𝑉 = set of nodes

ℰ𝑡 = set of hyperlinks (interactions) at 𝑡
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Higher-order temporal networks

• Higher-order temporal network 𝐻

• Two representations
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Aggregated network 𝐻

Activity of hyperlink 𝑖: 
𝒙𝑖 = 𝑥𝑖 1 , 𝑥𝑖 2 , 𝑥𝑖 3 , 𝑥𝑖 4

Sequence of network snapshots: 
𝐻 = 𝐻1, 𝐻2, 𝐻3, 𝐻4 with 𝐻𝑡 = (𝑉, ℰ𝑡)

𝑉 = set of nodes

ℰ𝑡 = set of hyperlinks (interactions) at 𝑡
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Goal

• Predict future hyperlink activity

• Understand prediction mechanism
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Memory in HOTNs: Jaccard similarity

• Similarity of network topology over time

•
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Memory in HOTNs: auto-correlation

• Similarity of hyperlink activity over time

• Pearson correlation coefficient between and
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ሼ𝑥𝑖 ሽ𝑡 𝑡=Δ+1,Δ+2,…,𝑇

ሼ𝑥𝑖 ሽ𝑡 𝑡=1,2,…,𝑇−Δ



Memory in HOTNs
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Prediction: self-driven model
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• Recent events (interactions) have more influence than past events

•

• Only uses past activity of target hyperlink 𝑖

𝑤𝑖 𝑡 + 1 =
𝑘=𝑡−𝐿+1

𝑘=𝑡

𝑥𝑖 𝑘 𝑒−τ 𝑡−𝑘



• Definition:  For a target hyperlink ℎ, a neighboring hyperlink ℎ′ is called
a type 𝜙-neighbor of ℎ, with 𝜙 = (𝑑𝑑′𝑜), where:

• 𝑑 = order of ℎ

• 𝑑′ = order of ℎ′

• 𝑜 = #overlapping nodes

‘Neighboring’ hyperlinks
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ℎ



• Definition:  For a target hyperlink ℎ, a neighboring hyperlink ℎ′ is called
a type 𝜙-neighbor of ℎ, with 𝜙 = (𝑑𝑑′𝑜), where:

• 𝑑 = order of ℎ

• 𝑑′ = order of ℎ′

• 𝑜 = #overlapping nodes

‘Neighboring’ hyperlinks
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ℎ′

𝜙 = 331



• Definition:  For a target hyperlink ℎ, a neighboring hyperlink ℎ′ is called
a type 𝜙-neighbor of ℎ, with 𝜙 = (𝑑𝑑′𝑜), where:

• 𝑑 = order of ℎ

• 𝑑′ = order of ℎ′

• 𝑜 = #overlapping nodes

‘Neighboring’ hyperlinks
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𝜙 = 342

𝜙 = 321



• Definition:  For a target hyperlink ℎ, a neighboring hyperlink ℎ′ is called
a type 𝜙-neighbor of ℎ, with 𝜙 = (𝑑𝑑′𝑜), where:

• 𝑑 = order of ℎ

• 𝑑′ = order of ℎ′

• 𝑜 = #overlapping nodes

• Sub-hyperlinks: ℎ′ ⊂ ℎ

‘Neighboring’ hyperlinks
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𝜙 = 322



• Definition:  For a target hyperlink ℎ, a neighboring hyperlink ℎ′ is called
a type 𝜙-neighbor of ℎ, with 𝜙 = (𝑑𝑑′𝑜), where:

• 𝑑 = order of ℎ

• 𝑑′ = order of ℎ′

• 𝑜 = #overlapping nodes

• Sub-hyperlinks: ℎ′ ⊂ ℎ

• Super-hyperlinks: ℎ′ ⊃ ℎ

‘Neighboring’ hyperlinks
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𝜙 = 343



• Definition:  For a target hyperlink ℎ, a neighboring hyperlink ℎ′ is called
a type 𝜙-neighbor of ℎ, with 𝜙 = (𝑑𝑑′𝑜), where:

• 𝑑 = order of ℎ

• 𝑑′ = order of ℎ′

• 𝑜 = #overlapping nodes

• Sub-hyperlinks: ℎ′ ⊂ ℎ

• Super-hyperlinks: ℎ′ ⊃ ℎ

• All possible types 𝜙 for hyperlink order 𝑑 ∈ 2,3,4 :

‘Neighboring’ hyperlinks
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Memory in HOTNs: target and neighbors
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• Similarity of target and neighbor activity over time

• Pearson correlation coefficient between target’s activity and average
‘lagged’ activity of neighbors



Prediction: general model
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• Sum over past activations of target and neighbors

•

• Coefficients learned using Lasso regression

𝑤𝑖 𝑡 + 1 =
𝜙∈𝛷𝑑

𝑐𝜙 𝑦𝑖
𝜙
𝑡 + 𝑐𝑑

𝑦𝑖
𝜙
𝑡 =

𝑘=𝑡−𝐿+1

𝑘=𝑡


𝑗∈𝑆𝑖

𝜙
𝑥𝑗 𝑘 𝑒−𝜏 𝑡−𝑘



Prediction: general model
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• Sum over past activations of target and neighbors

•

• Coefficients learned using Lasso regression

• Coefficients + memory analysis: target is most important, followed by
sub- & super-hyperlinks

𝑤𝑖 𝑡 + 1 =
𝜙∈𝛷𝑑

𝑐𝜙 𝑦𝑖
𝜙
𝑡 + 𝑐𝑑

𝑦𝑖
𝜙
𝑡 =

𝑘=𝑡−𝐿+1

𝑘=𝑡


𝑗∈𝑆𝑖

𝜙
𝑥𝑗 𝑘 𝑒−𝜏 𝑡−𝑘



Prediction: refined model
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• Sum over past activations of target and sub- & super-hyperlinks

• 𝑤𝑖 𝑡 + 1 =
𝜙∈𝛷𝑑

𝑐𝜙 𝑦𝑖
𝜙
𝑡 + 𝑐𝑑

𝑦𝑖
𝜙
𝑡 =
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General model

Refined model



Prediction: results
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• Pairwise self-driven model as baseline:

• General and refined model:

𝑤𝑖 𝑡 + 1 =
𝑘=𝑡−𝐿+1

𝑘=𝑡

𝑥𝑖 𝑘 𝑒−τ 𝑡−𝑘

𝑤𝑖 𝑡 + 1 =
𝜙∈𝛷𝑑

𝑐𝜙 𝑦𝑖
𝜙
𝑡 + 𝑐𝑑

𝑦𝑖
𝜙
𝑡 =

𝑘=𝑡−𝐿+1

𝑘=𝑡


𝑗∈𝑆

𝑖
𝜙
𝑥𝑗 𝑘 𝑒−𝜏 𝑡−𝑘



Conclusions

• General and refined model outperform
baseline models

• Past activity of the target itself is the most 
important factor in forecasting its activity, 
followed by the past activity of its sub- & 
super-hyperlinks
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