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Learning from relational data

▶ Graphs are natural models for relational data that can help to learn in various timely applications
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Brain Connectomes
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Learning graphs from data: Accounting for directionality and cycles

▶ Undirected topology inference from nodal observations [Kolaczyk’09]
▶ Partial correlations and conditional dependence [Dempster’74]
▶ Sparsity [Friedman et al’07] and consistency [Meinshausen-Buhlmann’06]

▶ Key in neuroscience and bioinformatics

⇒ Functional network from fMRI signals [Sporns’10]

⇒ Gene-regulatory networks from microarray data [Mazumder-Hastie’12]

▶ This work: learn the structure of directed acyclic graphs (DAGs)

▶ DAGs have become prominent models in various ML applications

⇒ Conditional independences among variables in Bayesian networks

⇒ DAG edges may have causal interpretations

⇒ Bio [Sachs et al’05], genetics [Zhang et al’13], finance [Sanford-Moosa’12]

▶ Challenges: directionality, acyclicity (combinatorial constraint), identifiability
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Causal reasoning and machine learning

▶ While our focus is on how optimization and statistical learning can aid inference of causal structures. . .

Toward Causal
Representation Learning
This article reviews fundamental concepts of causal inference and relates them to crucial
open problems of machine learning, including transfer learning and generalization,
thereby assaying how causality can contribute to modern machine learning research.

By BERNHARD SCHÖLKOPF , FRANCESCO LOCATELLO , STEFAN BAUER , NAN ROSEMARY KE,

NAL KALCHBRENNER, ANIRUDH GOYAL, AND YOSHUA BENGIO

ABSTRACT | The two fields of machine learning and graphical

causality arose and are developed separately. However, there

is, now, cross-pollination and increasing interest in both fields

to benefit from the advances of the other. In this article,

we review fundamental concepts of causal inference and relate

them to crucial open problems of machine learning, including

transfer and generalization, thereby assaying how causality

can contribute to modern machine learning research. This also

applies in the opposite direction: we note that most work in

causality starts from the premise that the causal variables

are given. A central problem for AI and causality is, thus,

causal representation learning, that is, the discovery of high-

level causal variables from low-level observations. Finally,

we delineate some implications of causality for machine learn-

ing and propose key research areas at the intersection of both

communities.

KEYWORDS | Artificial intelligence; causality; deep learning;

representation learning.
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I. I N T R O D U C T I O N
If we compare what machine learning can do to what
animals accomplish, we observe that the former is rather
limited at some crucial feats where natural intelligence
excels. These include transfer to new problems and any
form of generalization that is not from one data point
to the next (sampled from the same distribution), but
rather from one problem to the next—both have been
termed generalization, but the latter is a much harder form
thereof, sometimes referred to as horizontal, strong, or out-
of-distribution generalization. This shortcoming is not too
surprising, given that machine learning often disregards
information that animals use heavily: interventions in the
world, domain shifts, and temporal structure—by and
large, we consider these factors a nuisance and try to engi-
neer them away. In accordance with this, the majority of
current successes of machine learning boil down to large-
scale pattern recognition on suitably collected independent
and identically distributed (i.i.d.) data.

To illustrate the implications of this choice and its rela-
tion to causal models, we start by highlighting key research
challenges.

A. Issue 1—Robustness

With the widespread adoption of deep learning
approaches in computer vision [103], [140], natural lan-
guage processing [55], and speech recognition [86], a sub-
stantial body of literature explored the robustness of the
prediction of state-of-the-art deep neural network archi-
tectures. The underlying motivation originates from the
fact that, in the real world, there is often little control
over the distribution from which the data come from.
In computer vision [76], [228], changes in the test dis-
tribution may, for instance, come from aberrations, such as
camera blur, noise, or compression quality [107], [129],
[170], [206], or from shifts, rotations, or viewpoints [7],
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. . . causal reasoning can inform how we do ML (transferability, generalization, distribution shifts)
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Roadmap

Background: Score-based learning of DAG structure

Concomitant linear DAG estimation

Experimental performance evaluation

Conclusions
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Linear structural equation (causal) models

▶ DAG G(V, E ,W) ∈ D, vertices V = {1, . . . , d}, edges E ⊆ V × V
⇒ Adjacency matrix W = [w1, . . . ,wd ] ∈ Rd×d of edge weights

⇒ Entry Wij ̸= 0 indicates a directed link from node i to j

▶ Random vector x = [x1, . . . , xd ] ∈ Rd , joint p(x) Markov w.r.t. G ∈ D
⇒ DAG G encodes conditional independencies among variables in x

⇒ Each xi depends only on its parents PAi = {j ∈ V : Wji ̸= 0}

▶ Linear structural equation model (SEM) to generate p(x) consists of

xi = wi
⊤x+ zi , ∀i ∈ V

⇒ Mutually independent, exogenous noises z = [z1, . . . , zd ]
⊤ ∈ Rd

⇒ Ex: x4 = w4
⊤x+ z4 = W14x1 +W24x2 +W34x3 + z4

1

x1

2x2 3 x3

4x4

5

x5

W12 W13

W14

W15

W24 W34

W45 W35

▶ Q: Estimate W (learn DAG G) using dataset X ∈ Rd×n with n i.i.d. samples from p(x)?
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Score-based methods: Problem statement

Given the data matrix X adhering to a linear SEM, learn the latent DAG G ∈ D by estimating
its adjacency matrix W as the solution to the score-minimization problem

min
G(W)

S(G(W);X) subject to G(W) ∈ D

▶ Learning a DAG solely from observational data X is NP-hard [Chickering’96]

⇒ Combinatorial acyclicity constraint G ∈ D nasty to enforce

⇒ Multiple DAGs may generate the same observational distribution p(x)

▶ Discrete optimization: combinatorial search methods

⇒ Penalized (BIC, MDL) likelihood and Bayesian scoring functions [Peters et al’17]

⇒ |D| grows superexponentially in d , methods face scalability issues

⇒ Approximate greedy search [Ramsey et al’17] and order-based methods [Park-Klabjan’17]
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Order-based methods: Recent advances

▶ If DAG’s causal (partial) order were known ⇒ W is upper-triangular

W =


0 W12 W13 W14 W15

0 0 0 W24 0
0 0 0 W34 W35

0 0 0 0 W45

0 0 0 0 0



▶ Exploit neat parameterization G(W) ∈ D ⇔ W = Π⊤UΠ

⇒ U ∈ Rd×d is an upper-triangular weight matrix

⇒ Permutation matrix Π ∈ {0, 1}d×d encodes the causal ordering

1

x1

2x2 3 x3

4x4

5

x5

W12 W13

W14

W15

W24 W34

W45 W35

▶ Search over exact DAGs in an end-to-end differentiable fashion

⇒ Learn permutations with Gumbel-Sinkhorn [Cundy et al’21] or SoftSort [Charpentier et al’22]

⇒ Bi-level optimization, topological order swaps at the outer level [Deng et al’23]

▶ Accurately recovering the causal ordering is challenging, especially when data are limited
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Breakthrough: From discrete to continuous optimization

▶ Acyclicity characterization using nonconvex, smooth functions H(W) : Rd×d 7→ R

⇒ Zero level set corresponds to DAGs: H(W) = 0 ⇐⇒ G(W) ∈ D

▶ Upshot: from combinatorial search to nonconvex (smooth) continuous optimization

min
G(W)

S(G(W);X) subject to G(W) ∈ D ⇐⇒ min
W

S(W;X) subject to H(W) = 0

▶ Q: What are these acyclicity functions H? What about the DAG scoring functions S?

X. Zheng et al, “DAGs with NOTEARS: Continuous optimization for structure learning,” NeurIPS, 2018
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Acyclicity functions

▶ Pioneering NOTEARS formulation proposed Hexpm(W) = Tr
(
eW◦W)

− d [Zheng et al’18]

⇒ Idea: diagonal entries of powers of W ◦W encode information about cycles in G

eW =
∞∑
k=0

(W)k

k!
=

1 0 0
0 1 0
0 0 1

+
0 1 0
0 0 1
1 0 0


︸ ︷︷ ︸

self-loops

+
1

2

0 0 1
1 0 0
0 1 0


︸ ︷︷ ︸
cycles of size 2

+
1

6

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸
cycles of size 3

+ · · · 1

x1

2

x2

3

x3

▶ To speed up computation, [Yu et al’19] advocates Hpoly(W) = Tr
(
(I+ 1

d
W ◦W)d

)
− d

⇒ Cayley-Hamilton: both Hexpm and Hpoly subsumed by Tr
(∑d

k=1 ck(W ◦W)d
)
− d

▶ Log-determinant function Hldet(W; s) = d log(s)− log(det(sI−W ◦W)), s > ρ(W ◦W)

⇒ State-of-the-art with several attractive features at the heart of DAGMA

K. Bello et al, “DAGMA: Learning DAGs via M-matrices and a log-determinant acyclicity characterization,” NeurIPS, 2022
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Regression-based DAG scoring functions

▶ Ordinary LS loss augmented with an ℓ1-norm regularizer

S(W;X) = 1
2n
∥X−W⊤X∥2F + λ∥W∥1

⇒ λ ≥ 0 is a tuning parameter that controls edge sparsity

⇒ Computational efficiency, robustness, and even consistency [Loh-Buhlmann’15]

▶ Multi-task variant of lasso [Tibshirani’96], when response and design matrices coincide

⇒ Optimal rates for λ ≍ σ
√

log d/n [Li et al’20]. But σ2 is rarely known

▶ Key limitations we identify:

⇒ Requires carefully retuning λ when unknown σ2 changes across problems

⇒ Implicitly relies on limiting homoscedasticity assumptions
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Contributions

▶ New convex score function for sparsity-aware learning of linear DAGs

⇒ Incorporate concomitant estimation of scale parameters. Learn W and σ jointly

⇒ CoLiDE (Concomitant Linear DAG Estimation) decouples λ and σ. No recalibration

⇒ Unlike ordinary LS, it accommodates heteroscedastic exogenous noise profiles

▶ CoLiDE outperforms state-of-the-art methods across graph ensembles and noise distributions

⇒ Especially when DAGs are larger and the noise level profile is heterogeneous

⇒ Enhanced stability via reduced standard errors across domain-specific metrics

Table: DAG recovery results for 200-node ER4 graphs under homoscedastic Gaussian noise

Noise variance = 1.0 Noise variance = 5.0

GOLEM DAGMA CoLiDE-NV CoLiDE-EV GOLEM DAGMA CoLiDE-NV CoLiDE-EV
SHD 468.6±144.0 100.1±41.8 111.9±29 87.3±33.7 336.6±233.0 194.4±36.2 157±44.2 105.6±51.5
SID 22260±3951 4389±1204 5333±872 4010±1169 14472±9203 6582±1227 6067±1088 4444±1586
SHD-C 473.6±144.8 101.2±41.0 113.6±29.2 88.1±33.8 341.0±234.9 199.9±36.1 161.0±43.5 107.1±51.6
FDR 0.28±0.10 0.07±0.03 0.08±0.02 0.06±0.02 0.21±0.13 0.15±0.02 0.12±0.03 0.08±0.04
TPR 0.66±0.09 0.94±0.01 0.93±0.01 0.95±0.01 0.76±0.18 0.92±0.01 0.93±0.01 0.95±0.01

S. S. Saboksayr et al, “CoLiDE: Concomitant linear DAG estimation,” ICLR, 2024
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Concomitant Linear DAG Estimation

▶ Homoscedastic setting: z1, . . . , zd in the linear SEM have identical variance σ2

▶ Inspired by the smoothed concomitant lasso [Ndiaye et al’17], we propose CoLiDE-EV

min
W,σ≥σ0

[
1

2nσ
∥X−W⊤X∥2F +

dσ

2
+ λ∥W∥1

]
︸ ︷︷ ︸

:=S(W,σ;X)

subject to H(W) = 0

⇒ Can be traced back to the robust linear regression work of [Huber’81]

⇒ Constraint σ ≥ σ0 safeguards against ill-posed scenarios. Set σ0 =
∥X∥F√

dn
× 10−2

▶ Here λ decouples from σ as minimax optimality now requires λ ≍
√

log d/n

⇒ Score S(W, σ;X) is jointly convex w.r.t. W and σ. Overall nonconvex due to H(W)

⇒ Included (dσ)/2 so that σ̂2 is consistent under Gaussianity
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Optimization considerations

▶ Solve a sequence of unconstrained problems where H is viewed as a regularizer [Bello et al’22]

⇒ More effective in practice compared to an augmented Lagrangian method

▶ Given a decreasing sequence of values µk → 0, at step k of CoLiDE-EV solve

(P1) min
W,σ≥σ0

µk

[
1

2nσ
∥X−W⊤X∥2F +

dσ

2
+ λ∥W∥1

]
+Hldet(W, sk)

⇒ Hyperparameters µk ≥ 0 and sk > 0 must be prescribed prior to implementation

⇒ Decreasing the value of µk enhances the influence of the acyclicity function

⇒ Like central path approach of barrier methods. Limit µk → 0 is guaranteed to yield a DAG
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Inexact block coordinate descent

▶ CoLiDE-EV jointly estimates noise level σ and adjacency matrix W for each µk

⇒ Rely on inexact block coordinate descent (BCD) iterations

▶ Step 1: Fix σ to its most up-to-date value and minimize S(W, σ;X) inexactly w.r.t. W

⇒ Run one iteration of the ADAM optimizer

▶ Step 2: Update σ in closed form given the latest W

σ̂ = max

(
1√
nd

∥X−W⊤X∥F , σ0

)
= max

(√
Tr ((I−W)⊤ cov(X)(I−W)) /d , σ0

)
⇒ Precomputed sample covariance matrix cov(X) := 1

n
XX⊤

▶ Provably convergent block successive convex approximation (BSCA) algorithm also effective

S. S. Saboksayr et al, “Block successive convex approximation for concomitant linear DAG estimation,” SAM Workshop, 2024
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Heteroscedastic linear SEM

▶ Heteroscedastic setting: noise variables have non-equal variances (NV) σ2
1 , . . . , σ

2
d

▶ Mimicking the optimization approach for the EV case, we propose CoLiDE-NV

(P2) min
W,Σ≥Σ0

µk

[
1

2n
Tr

(
(X−W⊤X)⊤Σ−1(X−W⊤X)

)
+

1

2
Tr(Σ) + λ∥W∥1

]
+Hldet(W, sk)

⇒ Σ = diag(σ1, . . . , σd) is a diagonal matrix of exogenous noise standard deviations

⇒ Special case Σ = σI yields CoLiDE-EV score function

▶ Closed-form solution for Σ given W

Σ̂ = max
(√

diag ((I−W)⊤ cov(X)(I−W)),Σ0

)
or σ̂i = max

(
1√
n
∥xi − wi

⊤X∥2, σ0

)
▶ CoLiDE’s per iteration cost is O(d3), on par with state-of-the-art DAG learning methods
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Summary and discussion points

Algorithm 1: CoLiDE optimization

In: data X and hyperparameters λ and H = {(µk , sk ,Tk )}Kk=1.
Out: DAG W and the noise estimate σ (EV) or Σ (NV).
Compute lower-bounds σ0 or Σ0.
Initialize W = 0, σ = σ0 × 102 or Σ = Σ0 × 102.
foreach (µk , sk ,Tk ) ∈ H do

for t = 1, . . . ,Tk do
Apply CoLiDE-EV or NV updates using µk and sk .

Function CoLiDE-EV update:
Update W with one iteration of
a first-order method for (P1)

Compute σ̂ in closed form

Function CoLiDE-NV update:
Update W with one iteration of
a first-order method for (P2)

Compute Σ̂ in closed form

▶ Decomposable: unlike Gaussian profile log-likelihood in GOLEM [Ng et al’20]

S(W;X) = −1

2

d∑
i=1

log

(∥∥∥xi − wi
⊤X

∥∥∥2

2

)
+ log (| det(I−W)|) + λ∥W∥1

▶ Guarantees: consider general (non-identifiable) linear Gaussian SEMs

⇒ As n → ∞ CoLiDE-NV outputs a DAG quasi-equivalent to the ground-truth graph

▶ Flexible: other convex losses beyond LS, other H, nonlinear SEMs, impact to order-based methods

I. Ng et al, “On the role of sparsity and DAG constraints for learning linear DAGs,” NeurIPS, 2020
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Experimental performance evaluation

▶ Comprehensive evaluation to assess the effectiveness of the CoLiDE framework

⇒ Validate DAG recovery performance in synthetic EV and NV settings

⇒ Examine noise estimation performance

⇒ Evaluate DAG recovery performance on real-world datasets

⇒ Compare with other methods such as DAGMA, GOLEM, SortNRegress, GES, . . .

▶ Tests across graph types (edge weights, average degree), noise distributions, values of d , n, σ

▶ Reproducibility: code to generate all figures at https://github.com/SAMiatto/colide

CoLiDE: Concomitant Linear DAG Estimation Graphs and Data Seminar Series 18
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Experiments: Homoscedastic setting

▶ Investigate the impact of noise level σ2 on DAG recovery performance
▶ Graphs: 200-node ER4 graphs, Wij drawn uniformly from [−2,−0.5] ∪ [0.5, 2]
▶ Data: n = 1000 samples via linear SEM, diverse noise distributions
▶ Metric: SHD counts number of edge corrections required to recover true graph from estimate

CoLiDE-EV CoLiDE-NV GOLEM-EV GOLEM-NV DAGMA SortNRegress

▶ CoLiDE-EV outperforming DAGMA clearly demonstrates the gains come from S(W, σ;X)
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Experiments: Heteroscedastic setting

▶ Heteroscedastic scenario poses further challenges ⇒ Non-indentifiable from observational data
▶ Noise variance of each node σ2

i is uniformly drawn from [0.5, 10]
▶ Graphs: ER4 graphs varying d ; Wij drawn from [−1,−0.25] ∪ [0.25, 1] (lower SNR)
▶ Data: n = 1000 samples via linear SEM, diverse noise distributions

CoLiDE-EV CoLiDE-NV GOLEM-EV GOLEM-NV DAGMA SortNRegress

▶ CoLiDE-NV yields lower deviations than DAGMA and GOLEM, underscoring its robustness
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Experiments: Noise estimation

▶ Method’s ability to estimate noise variance ⇒ Proficiency in recovering accurate edge weights
▶ DAGMA does not explicitly estimate noise level, we use σ̂i

2 = 1
n
∥xi − ŵi

⊤X∥22
▶ Graphs: 200-node ER4 graphs, Wij drawn uniformly from [−2,−0.5] ∪ [0.5, 2]
▶ Signals: Linear SEM with Gaussian noise; vary n for EV (left) and NV (right) scenarios
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▶ CoLiDE-NV provides lower error even when using half as many samples as DAGMA
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Experiments: Cell-signaling data

▶ Tested CoLiDE on the Sachs dataset [Sachs et al’05]

⇒ Cytometric measurements from human immune system

⇒ Comprises d = 11 proteins, 17 edges, and n = 853 samples

⇒ Associated DAG is obtained through experimental methods

▶ CoLiDE-NV attains lowest SHD to date for this problem

Table: DAG recovery performance on the Sachs dataset

GOLEM-EV GOLEM-NV DAGMA SortNRegress DAGuerreotype GES CoLiDE-EV CoLiDE-NV

SHD 22 15 16 13 14 13 13 12
SID 49 58 52 47 50 56 47 46
SHD-C 19 11 15 13 12 11 13 14
FDR 0.83 0.66 0.5 0.61 0.57 0.5 0.54 0.53
TPR 0.11 0.11 0.05 0.29 0.17 0.23 0.29 0.35

K. Sachs et al, “Causal protein-signaling networks derived from multiparameter single-cell data,” Science, 2005
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Concluding remarks and the road ahead

▶ DAGs as general descriptors of causal and (in)dependence relationships

⇒ Understanding the enforcement of acyclicty for DAG learning from observational data

⇒ Emphasizing the significance of the score function in continuous-optimization methods

▶ Proposed framework: CoLiDE (Concomitant Linear DAG Estimation)

⇒ Jointly estimates the DAG structure and noise level

⇒ Adaptivity to changes in noise levels, requires less fine-tuning

⇒ Applicable to challenging heteroscedastic scenarios

⇒ Surpassing state-of-the-art in DAG recovery performance

▶ Ongoing and future work:

⇒ Non-linear SEMs via neural networks or kernels

⇒ Online DAG learning from streaming signals, time-series data via SVAR models
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