

CoLiDE: Concomitant Linear DAG Estimation

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://hajim.rochester.edu/ece/sites/gmateos

Collaborators: S. Saman Saboksayr and Mariano Tepper Acknowledgment: NSF Award ECCS-2231036, NY CoE in Data Science

> TU Delft March 11, 2025

Graphs are natural models for relational data that can help to learn in various timely applications

ROCHESTER

Learning graphs from data: Accounting for directionality and cycles

RÖCHESTER

- Undirected topology inference from nodal observations [Kolaczyk'09]
 - Partial correlations and conditional dependence [Dempster'74]
 - Sparsity [Friedman et al'07] and consistency [Meinshausen-Buhlmann'06]
- Key in neuroscience and bioinformatics
 - \Rightarrow Functional network from fMRI signals [Sporns'10]
 - \Rightarrow Gene-regulatory networks from microarray data [Mazumder-Hastie'12]

- Undirected topology inference from nodal observations [Kolaczyk'09]
 - Partial correlations and conditional dependence [Dempster'74]
 - Sparsity [Friedman et al'07] and consistency [Meinshausen-Buhlmann'06]
- Key in neuroscience and bioinformatics
 - \Rightarrow Functional network from fMRI signals [Sporns'10]
 - \Rightarrow Gene-regulatory networks from microarray data [Mazumder-Hastie'12]
- ► This work: learn the structure of directed acyclic graphs (DAGs)
- DAGs have become prominent models in various ML applications
 - \Rightarrow Conditional independences among variables in Bayesian networks
 - \Rightarrow DAG edges may have causal interpretations
 - \Rightarrow Bio [Sachs et al'05], genetics [Zhang et al'13], finance [Sanford-Moosa'12]
- ► Challenges: directionality, acyclicity (combinatorial constraint), identifiability

Causal reasoning and machine learning

While our focus is on how optimization and statistical learning can aid inference of causal structures...

INVESTIGATION INVESTIGATION

Toward Causal **Representation Learning**

open problems of machine learning, including transfer learning and generalization.

In Resource Sciences (Description | Description) Stream Record New Roussess Ve-NAL KALCHRRENNER, ANDRUDOR GOVAL, AND YORHEA BRADDO

ABUTRACT | The lass fields of machine learning and scientified | L INTRODUCTION are given. A central problem for AI and causality is, thus, of distribution generalization. This shortcoming is not too land caused variables have been been advanced and Parally information that aximals upor beaution incommunities in the environing | Arthural Intelligence; causality, deep beaving searcing auto region recognition on cuitably collected independent nerve providing author Announce conducts) of Gebildings and Gebies Researces with the Nex Panels institute for or Apresen, 1981% Tablepon, Gemany Journal Registeringen.mpg.de another ableget angular. A local 1-- Beberroom

With the widespread adoption of deep learning

Foundations and Trends® in Signal Processing Causal Deep Learning: Encouraging Impact on Real-world Problems Through Causality

hands own der Schaue (2024). "Causal Deen Learning: Encouraging Impact on Real-world Problems Through Causality", Foundations and Trends⁴ in Signal Processing: Vol. 18,

> Jeroen Berreunets University of Cambridge irrorn herrevoets@maths.cam.ac.uk

> > Krawstof Kacorak University of Cambridge kk751@cam.ac.uk

Zhaozhi Olan University of Cambridge thaothi gian@maths.com.ac.uk

Milhaela yan der Schaar University of Cambridge, and The Alan Turing Institute mv472@cam.ac.uk

... causal reasoning can inform how we do ML (transferability, generalization, distribution shifts)

Background: Score-based learning of DAG structure

Concomitant linear DAG estimation

Experimental performance evaluation

Conclusions

Linear structural equation (causal) models

- DAG G(V, E, W) ∈ D, vertices V = {1,..., d}, edges E ⊆ V × V
 ⇒ Adjacency matrix W = [w₁,..., w_d] ∈ R^{d×d} of edge weights
 ⇒ Entry W_{ii} ≠ 0 indicates a directed link from node i to j
- ▶ Random vector $\mathbf{x} = [x_1, ..., x_d] \in \mathbb{R}^d$, joint $p(\mathbf{x})$ Markov w.r.t. $\mathcal{G} \in \mathbb{D}$ ⇒ DAG \mathcal{G} encodes conditional independencies among variables in \mathbf{x}
 - \Rightarrow Each x_i depends only on its parents $\mathsf{PA}_i = \{j \in \mathcal{V} : W_{ji} \neq 0\}$

Linear structural equation (causal) models

- DAG G(V, E, W) ∈ D, vertices V = {1,..., d}, edges E ⊆ V × V
 ⇒ Adjacency matrix W = [w₁,..., w_d] ∈ R^{d×d} of edge weights
 ⇒ Entry W_{ii} ≠ 0 indicates a directed link from node i to j
- ▶ Random vector x = [x₁,...,x_d] ∈ ℝ^d, joint p(x) Markov w.r.t. G ∈ D
 ⇒ DAG G encodes conditional independencies among variables in x
 ⇒ Each x_i depends only on its parents PA_i = {j ∈ V : W_{ii} ≠ 0}
- Linear structural equation model (SEM) to generate p(x) consists of

$$\mathbf{x}_i = \mathbf{w}_i^{\top} \mathbf{x} + z_i, \quad \forall i \in \mathcal{V}$$

 $\Rightarrow \text{ Mutually independent, exogenous noises } \mathbf{z} = [z_1, \dots, z_d]^\top \in \mathbb{R}^d$ $\Rightarrow \text{ Ex: } \mathbf{x}_4 = \mathbf{w}_4^\top \mathbf{x} + z_4 = W_{14}\mathbf{x}_1 + W_{24}\mathbf{x}_2 + W_{34}\mathbf{x}_3 + z_4$

Linear structural equation (causal) models

- DAG G(V, E, W) ∈ D, vertices V = {1,..., d}, edges E ⊆ V × V
 ⇒ Adjacency matrix W = [w₁,..., w_d] ∈ R^{d×d} of edge weights
 ⇒ Entry W_{ii} ≠ 0 indicates a directed link from node i to j
- ▶ Random vector x = [x₁,...,x_d] ∈ ℝ^d, joint p(x) Markov w.r.t. G ∈ D
 ⇒ DAG G encodes conditional independencies among variables in x
 ⇒ Each x_i depends only on its parents PA_i = {j ∈ V : W_{ii} ≠ 0}
- Linear structural equation model (SEM) to generate $p(\mathbf{x})$ consists of

$$\mathbf{x}_i = \mathbf{w}_i^{\top} \mathbf{x} + z_i, \quad \forall i \in \mathcal{V}$$

- $\Rightarrow \text{ Mutually independent, exogenous noises } \mathbf{z} = [z_1, \dots, z_d]^\top \in \mathbb{R}^d$ $\Rightarrow \text{ Ex: } \mathbf{x}_4 = \mathbf{w}_4^\top \mathbf{x} + z_4 = W_{14}\mathbf{x}_1 + W_{24}\mathbf{x}_2 + W_{34}\mathbf{x}_3 + z_4$
- ▶ Q: Estimate W (learn DAG \mathcal{G}) using dataset $X \in \mathbb{R}^{d \times n}$ with *n* i.i.d. samples from p(x)?

Given the data matrix X adhering to a linear SEM, learn the latent DAG $\mathcal{G}\in\mathbb{D}$ by estimating its adjacency matrix W as the solution to the score-minimization problem

 $\min_{\mathcal{G}(\mathsf{W})} \ \mathcal{S}(\mathcal{G}(\mathsf{W});\mathsf{X}) \text{ subject to } \mathcal{G}(\mathsf{W}) \in \mathbb{D}$

Learning a DAG solely from observational data X is NP-hard [Chickering'96]

- \Rightarrow Combinatorial acyclicity constraint $\mathcal{G}\in\mathbb{D}$ nasty to enforce
- \Rightarrow Multiple DAGs may generate the same observational distribution $p(\mathbf{x})$

Given the data matrix X adhering to a linear SEM, learn the latent DAG $\mathcal{G}\in\mathbb{D}$ by estimating its adjacency matrix W as the solution to the score-minimization problem

 $\min_{\mathcal{G}(\mathsf{W})} \ \mathcal{S}(\mathcal{G}(\mathsf{W});\mathsf{X}) \ \text{subject to} \ \mathcal{G}(\mathsf{W}) \in \mathbb{D}$

Learning a DAG solely from observational data X is NP-hard [Chickering'96]

- \Rightarrow Combinatorial acyclicity constraint $\mathcal{G}\in\mathbb{D}$ nasty to enforce
- \Rightarrow Multiple DAGs may generate the same observational distribution $p(\mathbf{x})$

Discrete optimization: combinatorial search methods

- \Rightarrow Penalized (BIC, MDL) likelihood and Bayesian scoring functions [Peters et al'17]
- \Rightarrow $|\mathbb{D}|$ grows superexponentially in *d*, methods face scalability issues
- \Rightarrow Approximate greedy search [Ramsey et al'17] and order-based methods [Park-Klabjan'17]

Order-based methods: Recent advances

• If DAG's causal (partial) order were known \Rightarrow W is upper-triangular

$$\mathbf{W} = \begin{bmatrix} 0 & W_{12} & W_{13} & W_{14} & W_{15} \\ 0 & 0 & 0 & W_{24} & 0 \\ 0 & 0 & 0 & W_{34} & W_{35} \\ 0 & 0 & 0 & 0 & W_{45} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

▶ If DAG's causal (partial) order were known \Rightarrow W is upper-triangular

$$\mathbf{W} = \begin{bmatrix} 0 & W_{12} & W_{13} & W_{14} & W_{15} \\ 0 & 0 & 0 & W_{24} & 0 \\ 0 & 0 & 0 & W_{34} & W_{35} \\ 0 & 0 & 0 & 0 & W_{45} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Exploit neat parameterization $\mathcal{G}(W) \in \mathbb{D} \Leftrightarrow W = \Pi^\top U \Pi$
 - \Rightarrow **U** $\in \mathbb{R}^{d imes d}$ is an upper-triangular weight matrix
 - \Rightarrow Permutation matrix $\Pi \in \{0,1\}^{d \times d}$ encodes the causal ordering

• If DAG's causal (partial) order were known \Rightarrow W is upper-triangular

$$\mathbf{W} = \begin{bmatrix} 0 & W_{12} & W_{13} & W_{14} & W_{15} \\ 0 & 0 & 0 & W_{24} & 0 \\ 0 & 0 & 0 & W_{34} & W_{35} \\ 0 & 0 & 0 & 0 & W_{45} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Exploit neat parameterization $\mathcal{G}(W) \in \mathbb{D} \Leftrightarrow W = \Pi^\top U \Pi$
 - \Rightarrow $\textbf{U} \in \mathbb{R}^{d \times d}$ is an upper-triangular weight matrix
 - \Rightarrow Permutation matrix $\Pi \in \{0,1\}^{d \times d}$ encodes the causal ordering
- Search over exact DAGs in an end-to-end differentiable fashion
 - \Rightarrow Learn permutations with Gumbel-Sinkhorn [Cundy et al'21] or SoftSort [Charpentier et al'22]
 - \Rightarrow Bi-level optimization, topological order swaps at the outer level $[{\sf Deng\ et\ al'}23]$
- Accurately recovering the causal ordering is challenging, especially when data are limited

- ► Acyclicity characterization using nonconvex, smooth functions $\mathcal{H}(W) : \mathbb{R}^{d \times d} \mapsto \mathbb{R}$
 - \Rightarrow Zero level set corresponds to DAGs: $\mathcal{H}(W) = 0 \iff \mathcal{G}(W) \in \mathbb{D}$
- **Upshot:** from combinatorial search to nonconvex (smooth) continuous optimization

 $\min_{\mathcal{G}(\mathsf{W})} \ \mathcal{S}(\mathcal{G}(\mathsf{W}); \mathsf{X}) \text{ subject to } \ \mathcal{G}(\mathsf{W}) \in \mathbb{D} \quad \Longleftrightarrow \quad \min_{\mathsf{W}} \ \mathcal{S}(\mathsf{W}; \mathsf{X}) \text{ subject to } \ \mathcal{H}(\mathsf{W}) = 0$

▶ Q: What are these acyclicity functions \mathcal{H} ? What about the DAG scoring functions \mathcal{S} ?

X. Zheng et al, "DAGs with NOTEARS: Continuous optimization for structure learning," NeurIPS, 2018

▶ Pioneering NOTEARS formulation proposed $\mathcal{H}_{expm}(\mathbf{W}) = \text{Tr}(e^{\mathbf{W} \circ \mathbf{W}}) - d$ [Zheng et al'18]

 \Rightarrow Idea: diagonal entries of powers of $\bm{W} \circ \bm{W}$ encode information about cycles in $\mathcal G$

Acyclicity functions

X1

Pioneering NOTEARS formulation proposed H_{expm}(W) = Tr (e^{WoW}) − d [Zheng et al'18] ⇒ Idea: diagonal entries of powers of W ∘ W encode information about cycles in G

$$e^{\mathbf{W}} = \sum_{k=0}^{\infty} \frac{(\mathbf{W})^{k}}{k!} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0\\ \text{self-loops}}_{\text{self-loops}} + \frac{1}{2} \underbrace{\begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0\\ \text{cycles of size } 2 \end{bmatrix}}_{\text{cycles of size } 3} + \frac{1}{6} \underbrace{\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \text{cycles of size } 3 \end{bmatrix}}_{\text{cycles of size } 3} + \cdots$$

Acyclicity functions

X1

▶ Pioneering NOTEARS formulation proposed H_{expm}(W) = Tr (e^{WoW}) - d [Zheng et al'18] ⇒ Idea: diagonal entries of powers of W ∘ W encode information about cycles in G

$$e^{\mathbf{W}} = \sum_{k=0}^{\infty} \frac{(\mathbf{W})^{k}}{k!} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0\\ \text{self-loops}}_{\text{self-loops}} + \frac{1}{2} \underbrace{\begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0\\ \text{cycles of size } 2 \end{bmatrix}}_{\text{cycles of size } 3} + \frac{1}{6} \underbrace{\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \text{cycles of size } 3 \end{bmatrix}}_{\text{cycles of size } 3} + \cdots$$

► To speed up computation, [Yu et al'19] advocates $\mathcal{H}_{poly}(\mathbf{W}) = \text{Tr}\left((\mathbf{I} + \frac{1}{d}\mathbf{W} \circ \mathbf{W})^d\right) - d$ ⇒ Cayley-Hamilton: both \mathcal{H}_{expm} and \mathcal{H}_{poly} subsumed by $\text{Tr}\left(\sum_{k=1}^d c_k (\mathbf{W} \circ \mathbf{W})^d\right) - d$

► Log-determinant function $\mathcal{H}_{ldet}(\mathbf{W}; s) = d \log(s) - \log(\det(s\mathbf{I} - \mathbf{W} \circ \mathbf{W})), \quad s > \rho(\mathbf{W} \circ \mathbf{W})$ \Rightarrow State-of-the-art with several attractive features at the heart of DAGMA

K. Bello et al, "DAGMA: Learning DAGs via M-matrices and a log-determinant acyclicity characterization," NeurIPS, 2022

• Ordinary LS loss augmented with an ℓ_1 -norm regularizer

 $\mathcal{S}(\mathbf{W}; \mathbf{X}) = \frac{1}{2n} \|\mathbf{X} - \mathbf{W}^{\top} \mathbf{X} \|_{F}^{2} + \lambda \|\mathbf{W}\|_{1}$

 $\Rightarrow \lambda \geq 0$ is a tuning parameter that controls edge sparsity

⇒ Computational efficiency, robustness, and even consistency [Loh-Buhlmann'15]

• Ordinary LS loss augmented with an ℓ_1 -norm regularizer

 $\mathcal{S}(\mathbf{W}; \mathbf{X}) = \frac{1}{2n} \|\mathbf{X} - \mathbf{W}^{\top} \mathbf{X} \|_{F}^{2} + \lambda \|\mathbf{W}\|_{1}$

 $\Rightarrow \lambda \geq 0$ is a tuning parameter that controls edge sparsity

⇒ Computational efficiency, robustness, and even consistency [Loh-Buhlmann'15]

Multi-task variant of lasso [Tibshirani'96], when response and design matrices coincide

 \Rightarrow Optimal rates for $\lambda \asymp \sigma \sqrt{\log d/n}$ [Li et al'20]. But σ^2 is rarely known

Key limitations we identify:

- \Rightarrow Requires carefully retuning λ when unknown σ^2 changes across problems
- \Rightarrow Implicitly relies on limiting homoscedasticity assumptions

Contributions

- ► New convex score function for sparsity-aware learning of linear DAGs
 - \Rightarrow Incorporate concomitant estimation of scale parameters. Learn W and σ jointly
 - \Rightarrow CoLiDE (Concomitant Linear DAG Estimation) decouples λ and σ . No recalibration
 - \Rightarrow Unlike ordinary LS, it accommodates heteroscedastic exogenous noise profiles

Contributions

- ► New convex score function for sparsity-aware learning of linear DAGs
 - \Rightarrow Incorporate concomitant estimation of scale parameters. Learn W and σ jointly
 - \Rightarrow CoLiDE (Concomitant Linear DAG Estimation) decouples λ and σ . No recalibration
 - \Rightarrow Unlike ordinary LS, it accommodates heteroscedastic exogenous noise profiles
- CoLiDE outperforms state-of-the-art methods across graph ensembles and noise distributions
 - \Rightarrow Especially when DAGs are larger and the noise level profile is heterogeneous
 - \Rightarrow Enhanced stability via reduced standard errors across domain-specific metrics

	Noise variance $= 1.0$				Noise variance $= 5.0$			
	GOLEM	DAGMA	CoLiDE-NV	CoLiDE-EV	GOLEM	DAGMA	CoLiDE-NV	CoLiDE-EV
SHD	468.6 ± 144.0	100.1 ± 41.8	111.9 ± 29	87.3±33.7	336.6±233.0	194.4 ± 36.2	157 ± 44.2	$105.6 {\pm} 51.5$
SID	22260 ± 3951	4389 ± 1204	5333 ± 872	$4010{\pm}1169$	14472 ± 9203	6582 ± 1227	6067 ± 1088	$4444 {\pm} 1586$
SHD-C	473.6±144.8	101.2 ± 41.0	$113.6 {\pm} 29.2$	88.1±33.8	341.0 ± 234.9	199.9 ± 36.1	161.0 ± 43.5	$107.1 {\pm} 51.6$
FDR	$0.28 {\pm} 0.10$	0.07 ± 0.03	$0.08 {\pm} 0.02$	$0.06{\pm}0.02$	0.21 ± 0.13	$0.15 {\pm} 0.02$	$0.12 {\pm} 0.03$	$0.08{\pm}0.04$
TPR	$0.66{\pm}0.09$	$0.94{\pm}0.01$	$0.93{\pm}0.01$	$0.95{\pm}0.01$	$0.76{\pm}0.18$	$0.92{\pm}0.01$	$0.93{\pm}0.01$	$0.95{\pm}0.01$

Table: DAG recovery results for 200-node ER4 graphs under homoscedastic Gaussian noise

S. S. Saboksayr et al, "CoLiDE: Concomitant linear DAG estimation," ICLR, 2024

- Homoscedastic setting: z_1, \ldots, z_d in the linear SEM have identical variance σ^2
- ▶ Inspired by the smoothed concomitant lasso [Ndiaye et al'17], we propose CoLiDE-EV

$$\min_{\mathbf{W},\sigma \ge \sigma_0} \underbrace{\left[\frac{1}{2n\sigma} \|\mathbf{X} - \mathbf{W}^\top \mathbf{X}\|_F^2 + \frac{d\sigma}{2} + \lambda \|\mathbf{W}\|_1\right]}_{:=\mathcal{S}(\mathbf{W},\sigma;\mathbf{X})} \quad \text{subject to} \quad \mathcal{H}(\mathbf{W}) = 0$$

- \Rightarrow Can be traced back to the robust linear regression work of [Huber'81]
- \Rightarrow Constraint $\sigma \geq \sigma_0$ safeguards against ill-posed scenarios. Set $\sigma_0 = \frac{\|\mathbf{X}\|_F}{\sqrt{dn}} \times 10^{-2}$

- **Homoscedastic setting:** z_1, \ldots, z_d in the linear SEM have identical variance σ^2
- ► Inspired by the smoothed concomitant lasso [Ndiaye et al'17], we propose CoLiDE-EV

$$\min_{\mathbf{W},\sigma \ge \sigma_0} \underbrace{\left[\frac{1}{2n\sigma} \|\mathbf{X} - \mathbf{W}^\top \mathbf{X}\|_F^2 + \frac{d\sigma}{2} + \lambda \|\mathbf{W}\|_1\right]}_{:=\mathcal{S}(\mathbf{W},\sigma;\mathbf{X})} \quad \text{subject to} \quad \mathcal{H}(\mathbf{W}) = 0$$

 \Rightarrow Can be traced back to the robust linear regression work of [Huber'81]

 \Rightarrow Constraint $\sigma \geq \sigma_0$ safeguards against ill-posed scenarios. Set $\sigma_0 = \frac{\|\mathbf{X}\|_F}{\sqrt{dn}} \times 10^{-2}$

• Here λ decouples from σ as minimax optimality now requires $\lambda \simeq \sqrt{\log d/n}$

 \Rightarrow Score $S(W, \sigma; X)$ is jointly convex w.r.t. W and σ . Overall nonconvex due to $\mathcal{H}(W)$

 \Rightarrow Included $(d\sigma)/2$ so that $\hat{\sigma}^2$ is consistent under Gaussianity

- Solve a sequence of unconstrained problems where H is viewed as a regularizer [Bello et al'22]
 - \Rightarrow More effective in practice compared to an augmented Lagrangian method
- Given a decreasing sequence of values $\mu_k \rightarrow 0$, at step k of CoLiDE-EV solve

(P1)
$$\min_{\mathsf{W},\sigma\geq\sigma_0} \mu_k \left[\frac{1}{2n\sigma} \|\mathbf{X} - \mathbf{W}^\top \mathbf{X}\|_F^2 + \frac{d\sigma}{2} + \lambda \|\mathbf{W}\|_1 \right] + \mathcal{H}_{\mathsf{ldet}}(\mathsf{W}, s_k)$$

- \Rightarrow Hyperparameters $\mu_k \ge 0$ and $s_k > 0$ must be prescribed prior to implementation
- \Rightarrow Decreasing the value of μ_k enhances the influence of the acyclicity function
- \Rightarrow Like central path approach of barrier methods. Limit $\mu_k \rightarrow 0$ is guaranteed to yield a DAG

▶ CoLiDE-EV jointly estimates noise level σ and adjacency matrix W for each μ_k

 \Rightarrow Rely on inexact block coordinate descent (BCD) iterations

Step 1: Fix σ to its most up-to-date value and minimize $S(W, \sigma; X)$ inexactly w.r.t. W

 \Rightarrow Run one iteration of the ADAM optimizer

Step 2: Update σ in closed form given the latest W

$$\hat{\boldsymbol{\sigma}} = \max\left(\frac{1}{\sqrt{nd}} \|\boldsymbol{\mathsf{X}} - \boldsymbol{\mathsf{W}}^{\top}\boldsymbol{\mathsf{X}}\|_{F}, \sigma_{0}\right) = \max\left(\sqrt{\operatorname{Tr}\left((\boldsymbol{\mathsf{I}} - \boldsymbol{\mathsf{W}})^{\top}\operatorname{cov}(\boldsymbol{\mathsf{X}})(\boldsymbol{\mathsf{I}} - \boldsymbol{\mathsf{W}})\right)/d}, \sigma_{0}\right)$$

 \Rightarrow Precomputed sample covariance matrix $cov(\mathbf{X}) := \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$

▶ CoLiDE-EV jointly estimates noise level σ and adjacency matrix W for each μ_k

 \Rightarrow Rely on inexact block coordinate descent (BCD) iterations

Step 1: Fix σ to its most up-to-date value and minimize $S(W, \sigma; X)$ inexactly w.r.t. W

 \Rightarrow Run one iteration of the ADAM optimizer

Step 2: Update σ in closed form given the latest W

$$\hat{\boldsymbol{\sigma}} = \max\left(\frac{1}{\sqrt{nd}} \|\boldsymbol{\mathsf{X}} - \boldsymbol{\mathsf{W}}^{\top}\boldsymbol{\mathsf{X}}\|_{F}, \sigma_{0}\right) = \max\left(\sqrt{\operatorname{Tr}\left((\boldsymbol{\mathsf{I}} - \boldsymbol{\mathsf{W}})^{\top}\operatorname{cov}(\boldsymbol{\mathsf{X}})(\boldsymbol{\mathsf{I}} - \boldsymbol{\mathsf{W}})\right)/d}, \sigma_{0}\right)$$

 \Rightarrow Precomputed sample covariance matrix $cov(\mathbf{X}) := \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$

▶ Provably convergent block successive convex approximation (BSCA) algorithm also effective

S. S. Saboksayr et al, "Block successive convex approximation for concomitant linear DAG estimation," SAM Workshop, 2024

- Heteroscedastic setting: noise variables have non-equal variances (NV) $\sigma_1^2, \ldots, \sigma_d^2$
- ► Mimicking the optimization approach for the EV case, we propose CoLiDE-NV

$$(P2) \quad \min_{\mathsf{W}, \mathbf{\Sigma} \geq \mathbf{\Sigma}_0} \ \mu_k \left[\frac{1}{2n} \operatorname{Tr} \left((\mathbf{X} - \mathsf{W}^\top \mathbf{X})^\top \mathbf{\Sigma}^{-1} (\mathbf{X} - \mathsf{W}^\top \mathbf{X}) \right) + \frac{1}{2} \operatorname{Tr} (\mathbf{\Sigma}) + \lambda \| \mathsf{W} \|_1 \right] + \mathcal{H}_{\mathsf{Idet}} (\mathsf{W}, s_k)$$

 $\Rightarrow \Sigma = \text{diag}(\sigma_1, \dots, \sigma_d)$ is a diagonal matrix of exogenous noise standard deviations

 \Rightarrow Special case $\Sigma = \sigma I$ yields CoLiDE-EV score function

- Heteroscedastic setting: noise variables have non-equal variances (NV) $\sigma_1^2, \ldots, \sigma_d^2$
- Mimicking the optimization approach for the EV case, we propose CoLiDE-NV

$$(P2) \quad \min_{\mathsf{W}, \mathbf{\Sigma} \geq \mathbf{\Sigma}_0} \ \mu_k \left[\frac{1}{2n} \operatorname{Tr} \left((\mathbf{X} - \mathsf{W}^\top \mathbf{X})^\top \mathbf{\Sigma}^{-1} (\mathbf{X} - \mathsf{W}^\top \mathbf{X}) \right) + \frac{1}{2} \operatorname{Tr} (\mathbf{\Sigma}) + \lambda \| \mathsf{W} \|_1 \right] + \mathcal{H}_{\mathsf{ldet}} (\mathsf{W}, s_k)$$

 $\Rightarrow \Sigma = \text{diag}(\sigma_1, \dots, \sigma_d)$ is a diagonal matrix of exogenous noise standard deviations

 \Rightarrow Special case $\Sigma = \sigma I$ yields CoLiDE-EV score function

• Closed-form solution for Σ given W

$$\hat{\boldsymbol{\Sigma}} = \max\left(\sqrt{\text{diag}\left((\boldsymbol{\mathsf{I}}-\boldsymbol{\mathsf{W}})^\top\operatorname{cov}(\boldsymbol{\mathsf{X}})(\boldsymbol{\mathsf{I}}-\boldsymbol{\mathsf{W}})\right)},\boldsymbol{\Sigma}_0\right) \quad \text{or} \quad \hat{\sigma}_i = \max\left(\frac{1}{\sqrt{n}}\|\boldsymbol{\mathsf{x}}_i-{\boldsymbol{\mathsf{w}}_i}^\top\boldsymbol{\mathsf{X}}\|_2,\sigma_0\right)$$

• CoLiDE's per iteration cost is $\mathcal{O}(d^3)$, on par with state-of-the-art DAG learning methods

Algorithm 1: CoLiDE optimization	Function Col iDE-EV undate:			
In: data X and hyperparameters λ and $H = \{(\mu_k, s_k, T_k)\}_{k=1}^K$.	Update \mathbf{W} with one iteration of			
Out: DAG W and the noise estimate σ (EV) or \Sigma (NV).	a first-order method for (P1)			
Compute lower-bounds σ_0 or Σ_0 .	Compute $\hat{\sigma}$ in closed form			
Initialize $\mathbf{W} = 0, \ \sigma = \sigma_0 \times 10^2 \text{ or } \mathbf{\Sigma} = \mathbf{\Sigma}_0 \times 10^2.$	Function CoLiDE-NV update:			
foreach $(\mu_k, s_k, T_k) \in H$ do	Update W with one iteration of			
for $t = 1, \dots, T_k$ do	a first-order method for (P2)			
Apply CoLiDE-EV or NV updates using μ_k and s_k .	Compute Σ̂ in closed form			

Decomposable: unlike Gaussian profile log-likelihood in GOLEM [Ng et al'20]

$$\mathcal{S}(\mathsf{W}; \mathsf{X}) = -\frac{1}{2} \sum_{i=1}^{d} \log \left(\left\| \mathsf{x}_{i} - {\mathsf{w}_{i}}^{\top} \mathsf{X} \right\|_{2}^{2} \right) + \log \left(|\det(\mathsf{I} - \mathsf{W})| \right) + \lambda \|\mathsf{W}\|_{1}$$

► Guarantees: consider general (non-identifiable) linear Gaussian SEMs ⇒ As n → ∞ CoLiDE-NV outputs a DAG quasi-equivalent to the ground-truth graph

▶ Flexible: other convex losses beyond LS, other *H*, nonlinear SEMs, impact to order-based methods

I. Ng et al, "On the role of sparsity and DAG constraints for learning linear DAGs," NeurIPS, 2020

RÖCHESTER

- Comprehensive evaluation to assess the effectiveness of the CoLiDE framework
 - \Rightarrow Validate DAG recovery performance in synthetic EV and NV settings
 - \Rightarrow Examine noise estimation performance
 - \Rightarrow Evaluate DAG recovery performance on real-world datasets
 - \Rightarrow Compare with other methods such as DAGMA, GOLEM, SortNRegress, GES, ...
- **>** Tests across graph types (edge weights, average degree), noise distributions, values of d, n, σ
- Reproducibility: code to generate all figures at https://github.com/SAMiatto/colide

- \blacktriangleright Investigate the impact of noise level σ^2 on DAG recovery performance
 - ▶ Graphs: 200-node ER4 graphs, W_{ij} drawn uniformly from $[-2, -0.5] \cup [0.5, 2]$
 - **Data**: n = 1000 samples via linear SEM, diverse noise distributions
 - Metric: SHD counts number of edge corrections required to recover true graph from estimate

CoLiDE-EV outperforming DAGMA clearly demonstrates the gains come from $S(W, \sigma; X)$

- \blacktriangleright Heteroscedastic scenario poses further challenges \Rightarrow Non-indentifiable from observational data
 - Noise variance of each node σ_i^2 is uniformly drawn from [0.5, 10]
 - Graphs: ER4 graphs varying d; W_{ij} drawn from [−1, −0.25] ∪ [0.25, 1] (lower SNR)
 Data: n = 1000 samples via linear SEM, diverse noise distributions

CoLiDE-NV yields lower deviations than DAGMA and GOLEM, underscoring its robustness

Experiments: Noise estimation

- ▶ Method's ability to estimate noise variance ⇒ Proficiency in recovering accurate edge weights
 - **DAGMA** does not explicitly estimate noise level, we use $\hat{\sigma}_i^2 = \frac{1}{n} \|\mathbf{x}_i \hat{\mathbf{w}}_i^\top \mathbf{X}\|_2^2$
 - ▶ Graphs: 200-node ER4 graphs, W_{ij} drawn uniformly from $[-2, -0.5] \cup [0.5, 2]$
 - ▶ Signals: Linear SEM with Gaussian noise; vary *n* for EV (left) and NV (right) scenarios

CoLiDE-NV provides lower error even when using half as many samples as DAGMA

Experiments: Cell-signaling data

- ▶ Tested CoLiDE on the Sachs dataset [Sachs et al'05]
 - \Rightarrow Cytometric measurements from human immune system
 - \Rightarrow Comprises d = 11 proteins, 17 edges, and n = 853 samples
 - \Rightarrow Associated DAG is obtained through experimental methods
- CoLiDE-NV attains lowest SHD to date for this problem

	GOLEM-EV	GOLEM-NV	DAGMA	SortNRegress	DAGuerreotype	GES	CoLiDE-EV	CoLiDE-NV
SHD	22	15	16	13	14	13	13	12
SID	49	58	52	47	50	56	47	46
SHD-0	C 19	11	15	13	12	11	13	14
FDR	0.83	0.66	0.5	0.61	0.57	0.5	0.54	0.53
TPR	0.11	0.11	0.05	0.29	0.17	0.23	0.29	0.35

Table: DAG recovery performance on the Sachs dataset

K. Sachs et al, "Causal protein-signaling networks derived from multiparameter single-cell data," Science, 2005

Concluding remarks and the road ahead

- DAGs as general descriptors of causal and (in)dependence relationships
 - \Rightarrow Understanding the enforcement of acyclicty for DAG learning from observational data
 - \Rightarrow Emphasizing the significance of the score function in continuous-optimization methods
- Proposed framework: CoLiDE (Concomitant Linear DAG Estimation)
 - \Rightarrow Jointly estimates the DAG structure and noise level
 - \Rightarrow Adaptivity to changes in noise levels, requires less fine-tuning
 - \Rightarrow Applicable to challenging heteroscedastic scenarios
 - \Rightarrow Surpassing state-of-the-art in DAG recovery performance

- ▶ DAGs as general descriptors of causal and (in)dependence relationships
 - \Rightarrow Understanding the enforcement of acyclicty for DAG learning from observational data
 - \Rightarrow Emphasizing the significance of the score function in continuous-optimization methods
- Proposed framework: CoLiDE (Concomitant Linear DAG Estimation)
 - \Rightarrow Jointly estimates the DAG structure and noise level
 - \Rightarrow Adaptivity to changes in noise levels, requires less fine-tuning
 - \Rightarrow Applicable to challenging heteroscedastic scenarios
 - \Rightarrow Surpassing state-of-the-art in DAG recovery performance

Ongoing and future work:

- \Rightarrow Non-linear SEMs via neural networks or kernels
- \Rightarrow Online DAG learning from streaming signals, time-series data via SVAR models

