Modelling Floods with Graph Neural Networks

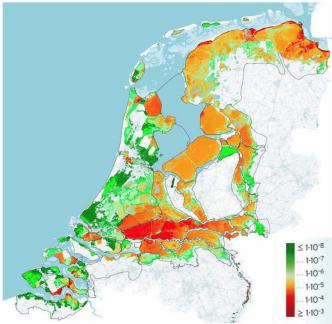
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Jonkman, Riccardo Taormina

Date: 03/04/25

UDelft

Why do we care about flood modelling?

- \rightarrow Flood risk
- \rightarrow Early warning systems



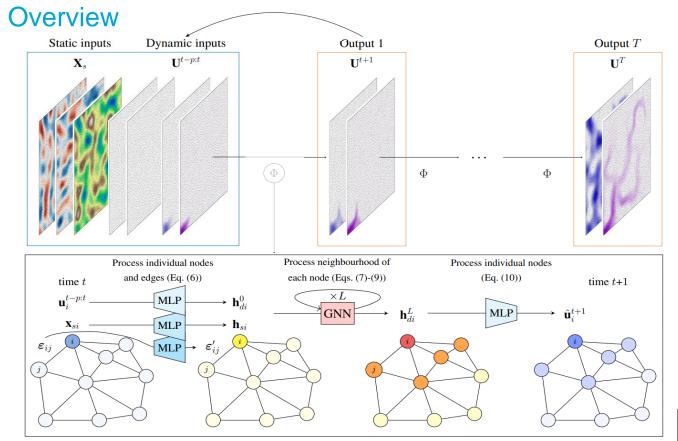
Sebastiaan N. Jonkman, Hessel G. Voortman, Wouter Jan Klerk & Saskia van Vuren (2018) Developments in the management of flood defences and hydraulic infrastructure in the Netherlands, Structure and Infrastructure Engineering, 14:7, 895-

910, DOI: 10.1080/15732479.2018.1441317

Motivation

- Accurate numerical models are computationally expensive
- Deep learning methods can be used to accelerate simulations
- Current models cannot predict the spatio-temporal evolution of floods for unseen topographies

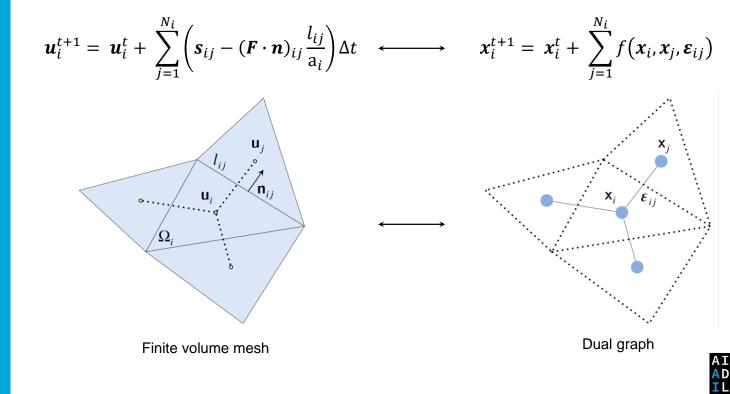
SWE-GNN



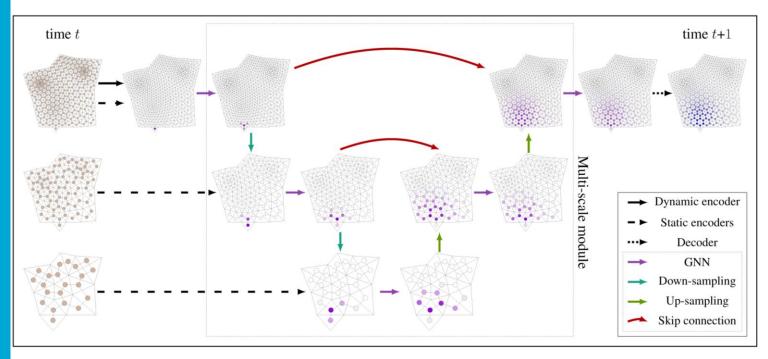
ŤUDelft

SWE-GNN

Motivation



Multi-scale SWE-GNN



Idea: each scale propagates water at different speeds

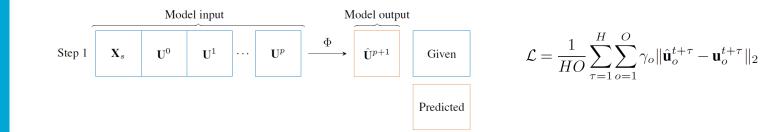
Training strategy

Multi-step-ahead loss function

$$\mathcal{L} = \frac{1}{HO} \sum_{\tau=1}^{H} \sum_{o=1}^{O} \gamma_o \| \hat{\mathbf{u}}_o^{t+\tau} - \mathbf{u}_o^{t+\tau} \|_2$$

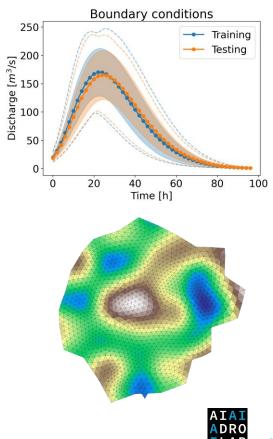
- Curriculum learning
 - Progressively increase prediction horizon *H* after a fixed amount of training epochs

Training strategy Curriculum learning

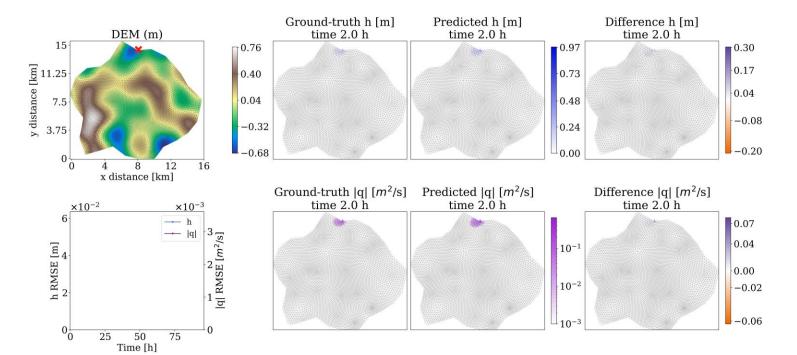


Dataset

- 60 training, 20 validation, 20 testing simulations
- Varying boundary conditions (peak ranges from 150 to 300 m³/s)
- Random terrains, random breach location
- 96 hours simulation time, 2h temporal resolution

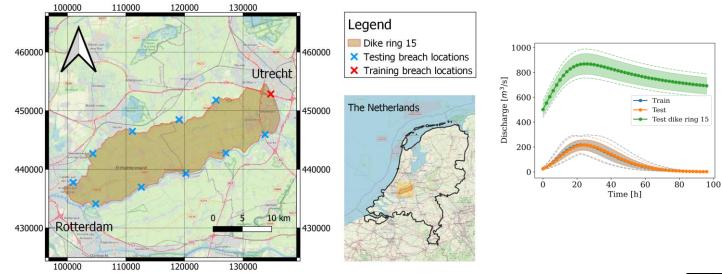


Results

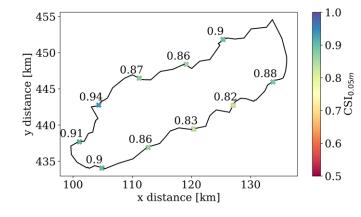


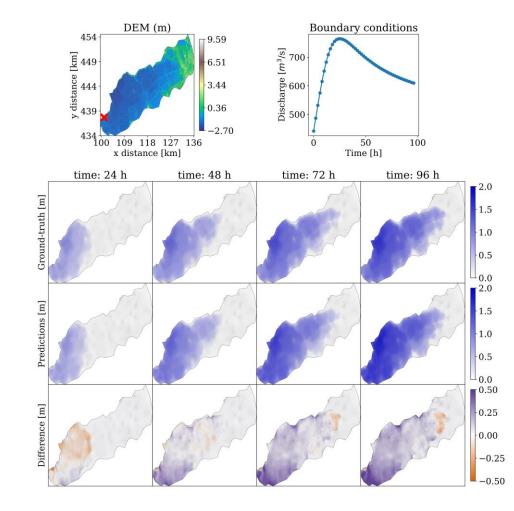
Dataset Case study

• Dike ring 15 Lopiker en Krimpenerwaard in the Netherlands



Results Case study





Results

Table 1. Mean and standard deviation of elevation (above sea level), number of cells, cell area, edge length, and total flood volume for the training, validation, and testing datasets. All geometric variables refer to the properties of the finest mesh in each dataset.

Dataset	No. of simulations	Elevation [m]	Number of cells	Cell area [m ²]	Edge length [m]	Flood volume [10 ⁶ m ³]
Train	60	-0.04 ± 0.6	10018 ± 1251	14817 ± 5717	182.8 ± 37.2	3.07 ± 0.66
Validation	20	-0.06 ± 0.58	10029 ± 904	13741 ± 5125	176.3 ± 34.9	2.9 ± 0.69
Test	20	-0.03 ± 0.53	9803 ± 1130	13480 ± 4917	174.9 ± 33.7	3.02 ± 0.64
Test dike ring 15	10	-1.07 ± 1.17	22 881	13544 ± 5521	174.7 ± 36.9	26.5 ± 2.54

Table 2. Effect of fine-tuning the mSWE-GNN model on dike ring 15. The provided uncertainty estimates account for the variability across different simulations. All metrics refer only to the finest mesh.

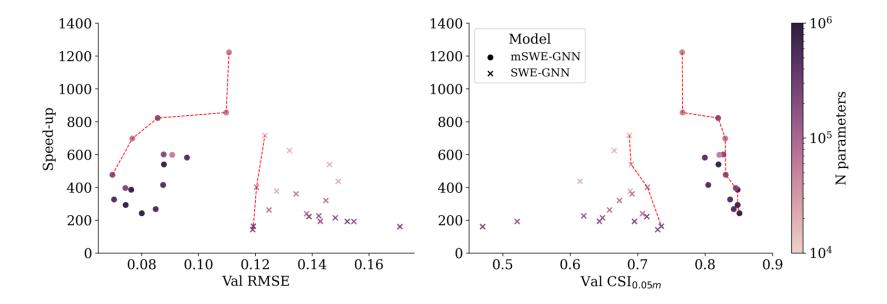
Fine-tuning	$MAE\downarrow$		CSI ₇ [%] ↑		
	$h [10^{-2} \mathrm{m}]$	$ q [10^{-2}{\rm m}^2{\rm s}^{-1}]$	$\tau = 0.05 \mathrm{m}$	$\tau = 0.3 \mathrm{m}$	
No Yes	31.09 ± 5.42 12.07 ± 4.19		63.36 ± 19.54 87.68 ± 10.3		

Results

Table 3. Ablation study on the removal or addition of individual architectural and training components for the synthetic testing dataset. These are using a learnable pooling for the downsampling operator, removing skip connections in Eq. (7), removing the 1D CNN in Eq. (8), and using rotation-dependent inputs. The best results are reported in bold; w/o denotes "without".

	DL model	MAE ↓		CSI ₇ [%] ↑	
		$h [10^{-2}\mathrm{m}]$	$ q [10^{-2} \mathrm{m}^2 \mathrm{s}^{-1}]$	$\tau = 0.05 \mathrm{m}$	$\tau = 0.3 \mathrm{m}$
	SWE-GNN mSWE-GNN	9.52 ± 5.03 4.84 ± 2.3	0.42 ± 0.16 0.27 ± 0.13	$68.7 \pm 18.9 \\ 84.02 \pm 9.18$	51.7 ± 22.1 69.56 ± 17.25
mSWE-GNN	with learnable pooling w/o skip connections	$5.72 \pm 3.09 \\ 5.22 \pm 2.22$	$\begin{array}{c} 0.32 \pm 0.13 \\ 0.32 \pm 0.15 \end{array}$	81.23 ± 12.23 82.44 ± 10.82	$\begin{array}{c} 63.67 \pm 19.66 \\ 66.81 \pm 17.31 \end{array}$
	w/o 1D CNN	5.57 ± 2.5	0.32 ± 0.14	80.75 ± 10.83	65.03 ± 19.21
	w/o rotation-invariant inputs	6.07 ± 2.27	0.34 ± 0.15	79.93 ± 10.18	62.89 ± 18.28

Results Comparison with SWE-GNN



Conclusions

- We propose a new graph neural network model inspired by finite volume methods for flood modelling
- The proposed model can predict the spatio-temporal evolution of dike-breach floods over
 - unseen topographies,
 - unseen breach locations,
 - unseen boundary conditions,
 - unseen meshes,
 - with speedups up to two orders of magnitude faster
- Future works should aim to apply the model for probabilistic analyses on real case studies

