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Introduction to Schwarz Domain
Decomposition Methods



Domain Decomposition Methods

Graphics based on results from Heinlein, Perego, Rajamanickam (2022)

Historical remarks: The alternating
Schwarz method is the earliest domain
decomposition method (DDM), which has
been invented by H. A. Schwarz and
published in 1870:

• Schwarz used the algorithm to establish
the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.
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The Alternating Schwarz Algorithm

For the sake of simplicity, instead of the two-dimensional geometry,
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we consider the one-dimensional Poisson
equation

−u′′ = 1 in [0, 1],
u(0) = u(1) = 0.

Overlapping domain decomposition:
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Solution: u(x) = −1
2x(x − 1).
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The Alternating Schwarz Algorithm – 1D Laplace Results

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 0.
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The Alternating Schwarz Algorithm – 1D Laplace Results

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 3.
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The Alternating Schwarz Algorithm – 1D Laplace Results

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 4.
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The Alternating Schwarz Algorithm – 1D Laplace Results

Let us consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0

We perform an alternating Schwarz iteration:

Figure 1: Iterate (left) and error (right) in iteration 5.
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Sequential Nature of the Alternating Schwarz Algorithm

The alternating Schwarz algorithm is sequential because each local boundary value
problem depends on the solution of the previous Dirichlet problem:

(D1)


−∆un+1/2 = f in Ω′

1,

un+1/2 = un on ∂Ω′
1

un+1/2 = un on Ω \ Ω′
1

(D2)


−∆un+1 = f in Ω2,

un+1 = un+1/2 on ∂Ω′
2

un+1 = un+1/2 on Ω \ Ω′
2

???

Idea: For all red terms, we use the values from the previous iteration. Then, the both
Dirichlet problem can be solved at the same time.
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The Parallel Schwarz Algorithm

The parallel Schwarz algorithm has been introduced by Lions (1988). Here, we solve the
local problems

(D1)
{

−∆un+1
1 = f in Ω′

1,

un+1
1 = un

2 on ∂Ω′
1,

(D2)
{
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2 = f in Ω2,
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2 = un

1 on ∂Ω′
2.
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Since un
1 and un

2 are both computed in the previous iteration, the problems can be solved
independent of each other.

This method is suitable for parallel computing!

!!!
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The Parallel Schwarz Algorithm – 1D Laplace Results

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0.

We perform a parallel Schwarz iteration:

Figure 2: Iterate (left) and error (right) in iteration 0.
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The Parallel Schwarz Algorithm – 1D Laplace Results

Let us again consider the simple boundary value problem: Find u such that

−u′′ = 1, in [0, 1], u (0) = u (1) = 0.

We perform a parallel Schwarz iteration:
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Effect of the Size of the Overlap

We investigate the convergence of the methods (using the alternating method as an example)
depending on the size of the overlap:
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⇒ A larger overlap leads to faster convergence.
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Figure 3: Error in iteration 0.

⇒ A larger overlap leads to faster convergence.
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Effect of the Size of the Overlap
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Figure 3: Error in iteration 2.
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Effect of the Size of the Overlap
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Figure 3: Error in iteration 3.

⇒ A larger overlap leads to faster convergence.
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Effect of the Size of the Overlap
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⇒ A larger overlap leads to faster convergence.
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Effect of the Size of the Overlap
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Figure 3: Error in iteration 5.
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Solvers for Partial Different Equations
Consider a diffusion model problem:

−∆u(x) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields a sparse system of linear
equations

Ku = f .

The accuracy of the finite element solution depends on the refinement
level of the mesh h: higher refinement ⇒ better accuracy.

Direct solvers
For fine meshes, solving the
system using a direct solver is not
feasible due to superlinear
complexity and memory cost.

Iterative solvers
Iterative solvers are efficient
for solving sparse systems,
however, the convergence rate
depends on the spectral
properties of K .

⇒ Introduce a preconditioner M−1 ≈ K−1 to improve convergence:

M−1Ku = M−1f
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Solvers for Partial Different Equations
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u = 0 on ∂Ω.
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1
OS-1K =

∑N

i=1
R⊤

i K−1
i Ri K ,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KR⊤

i .
Condition number estimate:

κ
(

M−1
OS-1K

)
≤ C

(
1 + 1

Hδ

)
with subdomain size H and overlap width δ.

Lagrangian coarse space
Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2K = ΦK−1

0 Φ⊤K︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
R⊤

i K−1
i Ri K︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and
K0 := Φ⊤KΦ; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires
a coarse triangulation.
Condition number estimate:

κ
(

M−1
OS-2K

)
≤ C

(
1 + H

δ

)
A. Heinlein (TU Delft) Graphs&Data@TUDelft 9/26



Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

0 50 100 150 200 250
10−13

10−9

10−5

10−1

iterations

∥b
−
A
x
∥

16 × 16

32 × 32

64 × 64

128 × 128

M−1
OS-1

4 × 4 subd.

Lagrangian coarse space
Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2K = ΦK−1

0 Φ⊤K︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
R⊤

i K−1
i Ri K︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and
K0 := Φ⊤KΦ; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires
a coarse triangulation.
Condition number estimate:

κ
(

M−1
OS-2K

)
≤ C

(
1 + H

δ

)
A. Heinlein (TU Delft) Graphs&Data@TUDelft 9/26



Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1
OS-1K =

∑N

i=1
R⊤

i K−1
i Ri K ,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KR⊤

i .
Condition number estimate:

κ
(

M−1
OS-1K

)
≤ C

(
1 + 1

Hδ

)
with subdomain size H and overlap width δ.

Lagrangian coarse space
Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2K = ΦK−1

0 Φ⊤K︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
R⊤

i K−1
i Ri K︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and
K0 := Φ⊤KΦ; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires
a coarse triangulation.
Condition number estimate:

κ
(

M−1
OS-2K

)
≤ C

(
1 + H

δ

)
A. Heinlein (TU Delft) Graphs&Data@TUDelft 9/26



Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 1h Solution of local problem

Lagrangian coarse space
Coarse triangulation Coarse solution

Diffusion model problem in two dimensions,
H/h = 100
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The FROSch Package – Algebraic and
Parallel Schwarz Preconditioners in
Trilinos



FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos
Software

• Object-oriented C++ domain decomposition solver framework with
MPI-based distributed memory parallelization

• Part of Trilinos with support for both parallel linear algebra packages
Epetra and Tpetra

• Node-level parallelization and performance portability on CPU and GPU
architectures through Kokkos and KokkosKernels

• Accessible through unified Trilinos solver interface Stratimikos

Methodology
• Parallel scalable multi-level Schwarz domain decomposition

preconditioners
• Algebraic construction based on the parallel distributed system matrix
• Extension-based coarse spaces

Team (active)
• Filipe Cumaru (TU Delft)
• Kyrill Ho (UCologne)
• Jascha Knepper (UCologne)
• Friederike Röver (TUBAF)
• Lea Saßmannshausen (UCologne)

• Alexander Heinlein (TU Delft)
• Axel Klawonn (UCologne)
• Siva Rajamanickam (SNL)
• Oliver Rheinbach (TUBAF)
• Ichitaro Yamazaki (SNL)
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Partition of Unity
The energy-minimizing extension vi = H∂Ωi →Ωi (vi,∂Ωi ) solves

−∆vi = 0 in Ωi ,

vi = vi,∂Ωi on ∂Ωi .

Hence, vi = E∂Ωi →Ωi (1∂Ωi ) = 1.

Due to linearity of the extension operator, we have∑
i
φi = 1∂Ωi ⇒

∑
i
E∂Ωi →Ωi (φi ) = 1Ωi

Null space property
Any extension-based coarse space built from a partition of unity on the domain decomposition interface
satisfies the null space property necessary for numerical scalability:∑

edges
⊂∂Ωi

+
∑

vertices
⊂∂Ωi

=

Algebraicity of the energy-minimizing extension
The computation of energy-minimizing extensions only requires KII

and KIΓ, submatrices of the fully assembled matrix Ki . v =
[

−K−1
II KIΓ

IΓ

]
vΓ,
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FROSch Construction – Graph View

In the algebraic construction of FROSch preconditioners, we use two different graphs:

Node graph

The node graph coincides with the simulation mesh
of the computational domain:

• Graph nodes ≡ mesh nodes
• Graph edges ≡ mesh element edges

In parallel simulations:

A =


• •
• • •

• • •
• • •

• • •
• • •

• • •
• •

 b =


•
•
•
•
•
•
•
•



Dual graph

The dual graph represents the connectivity of mesh
elements:

• Graph nodes ≡ mesh elements
• Graph edges ≡ shared edges between mesh

elements
In parallel finite element simulations, where the
matrix assembly is element-based, the distribution of
the data is done based on a partition of the dual
graph.
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements.

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD

Overlap δ = 1h Overlap δ = 2h
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements.

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Implementation as a graph search problem
The overlapping subdomains can be seen as the result of a limited breadth first search on the graph
representing the sparsity pattern of K.

=⇒ =⇒
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Algorithmic Framework for FROSch Preconditioners

Coarse space
1. Interface components
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Algorithmic Framework for FROSch Preconditioners

Coarse space
1. Interface components 2. Interface basis (partition of unity × null space)

For scalar elliptic
problems, the null space
consists only of
constant functions.
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Algorithmic Framework for FROSch Preconditioners

Coarse space
1. Interface components 2. Interface basis (partition of unity × null space)
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Construction of the interface entities
A partition of interface entities
can be found by inspecting the
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If it is not given as an input, it
can generally not be retained
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Examples of FROSch Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Buck, Iliev, and Andrä (2013)
• H., Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.
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Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).
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Some Challenging Application Problems



Monolithic (R)GDSW Preconditioners for CFD Simulations
Consider the discrete saddle point problem

Ax =
[

K B⊤

B 0

] [
u
p

]
=

[
f
0

]
= b.

Monolithic GDSW preconditioner
We construct a monolithic GDSW preconditioner

M−1
GDSW = ϕA−1

0 ϕ⊤ +
∑N

i=1
R⊤

i PiA
−1
i Ri ,

with block matrices A0 = ϕ⊤Aϕ, Ai = RiAR⊤
i ,

local pressure projections Pi , and

Ri =
[
Ru,i 0

0 Rp,i

]
and ϕ =

[
Φu,u0 Φu,p0
Φp,u0 Φp,p0

]
.

Using A to compute extensions: ϕI = −A−1
II AIΓϕΓ;

cf. Heinlein, Hochmuth, Klawonn (2019, 2020).

Φu,u0 Φp,u0 Φu,p0 Φp,p0 .

Stokes flow Navier–Stokes flow

Related work:
• Original work on monolithic Schwarz

preconditioners: Klawonn and Pavarino (1998,
2000)

• Other publications on monolithic Schwarz
preconditioners: e.g., Hwang and Cai (2006),
Barker and Cai (2010), Wu and Cai (2014),
and the presentation Dohrmann (2010) at the
Workshop on Adaptive Finite Elements and
Domain Decomposition Methods in Milan.
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Results for Blood Flow Simulations
• 3D unsteady flow simulation within the geometry of a realistic artery

(from Balzani et al. (2012)) and kinematic viscosity ν = 0.03 cm2/s
• Parabolic inflow profile is prescribed at inlet of geometry
• Time discretization: BDF-2; space discretization: P2-P1 elements
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prec. # MPI
ranks 16 64 256

Monolithic
RGDSW
(FROSch)

avg. #its. 33 31 30
setup 4 825 s 1 422 s 701 s
solve 3 198 s 1 004 s 463 s
total 8 023 s 2 426 s 1 164 s

SIMPLE
RGDSW (Teko
& FROSch)

avg. #its. 82 82 87
setup 3 046 s 824 s 428 s
solve 4 679 s 1 533 s 801 s
total 7 725 s 2 357 s 1 229 s

prec. # MPI
ranks 16 64 256

Monolithic
RGDSW
(FROSch)

avg. #its. 36 36 36
setup 4 808 s 1 448 s 688 s
solve 3 490 s 1 186 s 538 s
total 8 298 s 2 634 s 1 226 s

SIMPLE
RGDSW (Teko
& FROSch)

avg. #its. 157 164 169
setup 3 071 s 842 s 432 s
solve 9 541 s 3 210 s 1 585 s
total 12 612 s 4 052 s 2 017 s
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FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is
modeled by a first-order-accurate Stokes approximation model,

−∇ · (2µϵ̇1) + ρg ∂s
∂x = 0, −∇ · (2µϵ̇2) + ρg ∂s

∂y = 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).
Antarctica (velocity) Greenland (multiphysics vel. & temperature)

4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs
MPI ranks avg. its avg. setup avg. solve avg. its avg. setup avg. solve
512 41.9 (11) 25.10 s 12.29 s 41.3 (36) 18.78 s 4.99 s
1 024 43.3 (11) 9.18 s 5.85 s 53.0 (29) 8.68 s 4.22 s
2 048 41.4 (11) 4.15 s 2.63 s 62.2 (86) 4.47 s 4.23 s
4 096 41.2 (11) 1.66 s 1.49 s 68.9 (40) 2.52 s 2.86 s
8 192 40.2 (11) 1.26 s 1.06 s - - -

Computations performed on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)
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Spectral Extension-Based Coarse Spaces for Schwarz Preconditioners

Highly heterogeneous problems . . .
. . . appear in most areas of modern science and engineering:

Micro section of a
dual-phase steel.
Courtesy of J.
Schröder.

Groundwater flow
(SPE10);
cf. Christie and
Blunt (2001).

Composition of
arterial walls; taken
from O’Connell et
al. (2008).

Spectral coarse spaces
The coarse space is enhanced by eigenfunctions of
local edge and face eigenvalue problems with
eigenvalues below tolerances tolE and tolF:

κ
(

M−1
∗ K

)
≤ C

(
1 + 1

tolE
+ 1

tolF
+ 1

tolE · tolF

)
;

C does not depend on h, H, or the coefficients.
OS-ACMS & adaptive GDSW (AGDSW) (Heinlein,
Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Foam coefficient function example

Solid phase: α = 106; transparent phase: α = 1; 100 subdomains
V0 tolE tolF it. κ dim V0 dim V0/ dof
VGDSW — — 565 1.3·106 1 601 0.27 %
VAGDSW 0.05 0.05 60 30.2 1 968 0.33 %
VOS−ACMS 0.001 0.001 57 30.3 690 0.12 %

Cf. Heinlein, Klawonn, Knepper, Rheinbach (2018, 2019).
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κ
(

M−1
∗ K

)
≤ C

(
1 + 1

tolE
+ 1

tolF
+ 1

tolE · tolF

)
;

C does not depend on h, H, or the coefficients.
OS-ACMS & adaptive GDSW (AGDSW) (Heinlein,
Klawonn, Knepper, Rheinbach (2018, 2018, 2019)).

Local eigenvalue problems
Local generalized eigenvalue problems corresponding to the edges E and faces F of the domain decomposition:

∀E ∈ E : SEE τ∗,E = λ∗,E KEE τ∗,E , ∀τ∗,E ∈ VE ,

∀F ∈ F : SFF τ∗,F = λ∗,F KFF τ∗,F , ∀τ∗,F ∈ VF ,

with Schur complements SEE , SFF with Neumann boundary conditions and
submatrices KEE , KFF of K . We select eigenfunctions corresponding to eigenvalues
below tolerances tolE and tolF.
→ The corresponding coarse basis functions are energy-minimizing extensions into
the interior of the subdomains.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

E12 E23

E45 E56

E78 E89

E14 E25 E36

E47 E58 E69

Γ
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Domain Decomposition for Reservoir Simulations

Algebraic multiscale coarse space
• We investigate scalable and robust

simulation methods for underground
hydrogen storage.

• We consider two-level domain
decomposition solver with algebraic
multiscale solver (AMS) coarse
space; cf. Wang, Hajibeygi and
Tchelepi (2014).

Numerical results - SPE10 benchmark
Layer 72 from model 2; cf. Christie and
Blunt (2001).

preconditioner its. κ

- > 104 8.61 · 108

one-level 174 1.01 · 105

two-level w\ AMS 78 144.33

Numerical results - Weak scalability for high coefficient inclusions

Dark blue: α = 108; light blue: α = 1
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Cf. Alves, Heinlein and Hajibeygi (2024; preprint arXiv)
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Learning Extension Operators Using
Graph Neural Networks



Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

φi (ωj) = δij ,

on specifically chosen sets of nodes {ωj}j . The values in the remaining nodes are then obtained by
extending the values into the adjacent subdomains. Examples:

Subdomain-based

• The ωj are based on
nonoverl. subdomains Ωj

• No extensions needed
Cf. Nicolaides (1987).

GDSW

• The ωj are based on
partition of the interface

• Energy-minimizing exts.

Vertex-based

• Lagrangian: geometric ext.
• MsFEM: geometric and

energy-minimizing exts.
• RGDSW: algebraic and

energy-minimizing exts.
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Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

φi (ωj) = δij ,

on specifically chosen sets of nodes {ωj}j . The values in the remaining nodes are then obtained by
extending the values into the adjacent subdomains. Examples:

Observation 1
Energy-minimizing extensions

• are algebraic:
vI = −K−1

II KIΓvΓ

(with Dirichlet b. c.)
• can be costly: solving a

problem in the interior

Observation 2

Heterogeneous: αlight = 1; αdark = 108

The performance may strongly
depend on extension operator:

coarse space its. κ

— 163 4.06 · 107

Q1 138 1.07 · 106

MsFEM 24 8.05

Vertex-based

• Lagrangian: geometric ext.
• MsFEM: geometric and

energy-minimizing exts.
• RGDSW: algebraic and

energy-minimizing exts.→ Improving efficiency & robustness via machine learning.
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Related Works
This overview is not exhaustive:

Coarse spaces for domain decomposition methods
• Prediction of the geometric location of adaptive constraints (adaptive BDDC & FETI–DP as well as

AGDSW): Heinlein, Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021, 2022)

• Prediction of coarse basis functions: Chung, Kim, Lam, Zhao (2021); Klawonn, Lanser, Weber (2024,
2024); Kopaničáková, Karniadakis (2025)

• Learning interface conditions and coarse interpolation operators: Taghibakhshi et al. (2022, 2023)

Algebraic multigrid (AMG)
• Prediction of coarse grid operators: Luz et al. (2020); Tomasi, Krause (2023); Zhang et al. (2024)

• Coarsening: Taghibakhshi, MacLachlan, Olson, West (2021); Antonietti, Caldana, Dede (2023)

An overviews of the state-of-the-art on domain decomposition and machine learning in early 2021 and 2023:

A. Heinlein, A. Klawonn, M. Lanser, J. Weber
Combining machine learning and domain
decomposition methods for the solution of
partial differential equations — A review
GAMM-Mitteilungen. 2021.

A. Klawonn, M. Lanser, J. Weber
Machine learning and domain decomposition
methods – a survey
Computational Science and Engineering. 2024
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Prediction via Graph Convolutional Networks
Graph neural networks (GNNs) Gori, Monfardini, and Scarselli
(2005) are a natural choice for learning on data defined over
simulation meshes:

• Generalize CNNs LeCun (1998) to irregular,
graph-structured data.

• Learn via iterative aggregation from neighboring nodes.
• Naturally permutation invariant and geometrically robust.

Further references: Scarselli et al. (2005), Bruna et al. (2014), Henaff et

al. (2015), Defferrard et al. (2016), Kipf, Welling (2017), . . .

Local approach
• Input: subdomain matrix Ki

• Output: basis functions {φΩi
j }j

on the same subdomain
• Training on subdomains with

varying geometry
• Inference on unseen

subdomains

A. Heinlein (TU Delft) Graphs&Data@TUDelft 23/26



Theory-Inspired Design of the GNN-Based Coarse Space

Null space property
Any extension-based coarse space built from a partition of
unity on the domain decomposition interface satisfies the
null space property necessary for numerical scalability:∑
edges
⊂∂Ωi

+
∑

vertices
⊂∂Ωi

=

Explicit partition of unity
To explicitly enforce that the basis
functions

(
φj

)
j

form a partition of unity

φj = φ̂j∑
k φ̂k

,

where the φ̂k are the outputs of the
GNN.

Initial and target
• Initial function: partition of

unity that is constant in the
interior

• Target function:
• linear on the edges
• energy-minimizing in the

interior
→ Information transport via

message passing

Initial

Target

Learned
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Numerical Results for Homogeneous Laplacian – Weak Scaling Study
Model problem: 2D Laplacian
model problem discretized using
finite differences on a structured
grid

−∆u = 1 in Ω,

u = 0 on ∂Ω,

decomposed using METIS:

• The GNN has been trained
on 64 subdomains. Yamazaki, Heinlein, Rajamanickam (subm. 2024)
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Numerical Results for Heterogeneous Laplacian – Weak Scaling Study

Heterogeneous Laplacian with αmax/αmin = 103:

−∇ · (α(x)∇u(x)) = f in Ω = [0, 1]2, u = 0 on ∂Ω.

Yamazaki, Heinlein, Rajamanickam (subm. 2024)
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Scientific Machine Learning in Academia and Beyond:
From Theory to Real-World Impact (in Industry)

• Dates: June 17, 2025, 12.30–17.30
• Location: Crowne Plaza Hotel, Utrecht
• Lunch & networking: 12.30–13.30; closing discussion & drinks to follow.
• An afternoon with talks, case studies, and lively discussions on advancing scientific

machine learning from theory to real-world deployment — tackling core challenges like
uncertainty quantification, data assimilation, graph-based modelling, and operator
learning.

• Confirmed plenary speakers:
• Max Welling (UvA, CUSP AI)
• Stefan Kurz (ETH Zürich & Bosch)
• Koen Strien (Ignition Computing)
• Maxim Pisarenco (ASML)
• Jan Willem van de Meent (UvA)



CWI Research Semester Programme:
Bridging Numerical Analysis and Scientific Machine Learning: Advances and Applications

Co-organizers: Victorita Dolean (TU/e), Alexander Heinlein (TU Delft), Benjamin Sanderse
(CWI), Jemima Tabbeart (TU/e), Tristan van Leeuwen (CWI)

• Autumn School (October 27–31, 2025):
• Chris Budd (University of Bath)
• Ben Moseley (Imperial College London)
• Gabriele Steidl (Technische Universität Berlin)
• Andrew Stuart (California Institute of Technology)
• Andrea Walther (Humboldt-Universität zu Berlin)
• Ricardo Baptista (University of Toronto)

• Workshop (December 1–3, 2025):
• 3 days with plenary talks (academia & industry)

and an industry panel
• Confirmed plenary speakers:

• Marta d’Elia (Atomic Machines)
• Benjamin Peherstorfer (New York University)
• Andreas Roskopf (Fraunhofer Institute)

Join us for inspiring talks, hands-on sessions, and industry collaboration!

https://www.cwi.nl/en/education/semester-programmes/cwi-research-semester-programs/synergies-in-numerical-linear-algebra-and-machine-learning/


FROSch (Fast and Robust Overlapping Schwarz)
• FROSch is based on the Schwarz framework and energy-minimizing coarse spaces,

which provide numerical scalability using only algebraic information for a variety of
applications

• FROSch is well-integrated into the Trilinos software framework, enabling
• large-scale distributed memory parallelization and
• node-level performance on CPU and/or GPU architectures

Learning extension operators
• Extensions are a major component in the construction of coarse spaces for domain

decomposition methods.
• Using GNNs and known properties from the theory, we can learn extension

operators that lead to a scalable coarse spaces.

Thank you for your attention!
Topical Activity
Group

Scientific Machine
Learning

https://ems-tag-sciml.github.io/
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