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Computational models of structures are used everywhere

Design-specific complex materials can lead to more efficient structures
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Modeling complex material behavior requires a multiscale approach

Macroscale Mesoscale Microscale Nanoscale

■ Each scale depends on a lower scale

■ Ideally, we could optimize lower scale properties for macroscale performance
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Single scale

Finite Element (FE) method

Domain subject to boundary conditions
■ Displacements and forces

Find equilibrium
■ ∇ · σΩ = 0

■ Relate strains (ε) - stresses (σ)
■ Material dependent
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Multiscale - FE2

Two-scale coupling: FE2

■ Macroscopic strain is microscopic
boundary conditions

■ Find microscopic equilibrium

Homogenization
■ Obtain microscopic stress field
■ Average stress → σΩ

Large promise for increased accuracy

However: computationally expensive
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Surrogate modeling

■ Data-driven model
■ Trained on microscale simulations
■ Much faster to evaluate

Back to single-scale. Lose:
■ microscale geometry
■ microscale full-field solution
■ ability to switch back
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Graph neural network (GNN) approach

RNN

LσΩ ∝ (σ̂Ω − σΩ)2

GNN model
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From mesh to graph

Mesh → Dual graph

Mesh:
■ Nodes with forces, displacements and boundary conditions
■ Integration points with stresses, strains, and the material model

No dynamic behavior that spreads over time
Boundary condition: pass εΩ directly as features to the GNN
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From mesh to graph

Mesh → Dual graph

G feature: ∆x & ∆y to voids

Variable microstructure & element size
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Inputs and outputs

εω , σω and σΩ are all relevant

We know the εω → σω relation
■ σω fully depend on εω , but including both in the loss function helps
■ σΩ is an averaged quantity, including it in the loss reduces σω performance
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Inputs and outputs

G

GNN Mat

ML Physics
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Network architecture

Message Passing Layer

Aggregation 
function

Constitutive 
model

Microstructure Graph Lx MPL Material model

α : Internal variable
G : Graph structure

Encode → Process → Decode → Material model
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We can accurately predict all microscopic quantities in plasticity
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The material model is beneficial for prediction accuracy
Not when training

Base model
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Model can predict larger microstructures without modifications

σω
y

Testing a 49-void microstructure (training samples contain 1 to 9 voids)
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GNN can accalerate multiscale simulations

Different coding language and hardware
■ Only compare relative scaling, not absolute values
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Conclusion

Graph Neural Network surrogate for multiscale simulations

■ Carefully choose how to define the graph and process the information
■ Can train on small cheap microstructures and extrapolate to larger ones
■ Embedding physical material model increases prediction accuracy
■ We retain all microscopic quantities

Thank you for your attention
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Different training data generation strategies

We need artificial load paths to generate training data

Three cases for the load magnitude
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Gaussian process (GP) based training dataset improves generalization
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Embedding the material model is expensive

History state

Minimization problem: Newton-Raphson solve
■ For every element in mesh
■ Inside training loop → backpropagate error back

Internal history tracking → timesteps depend on all previous ones.
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Extrapolating in timesteps is stable
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Trained for 25 timesteps → tested for 50
Autoregressive model: errors can accumulate

but they do not

Average error increase per timestep:
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Unseen material settings
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All training data uses a void volume fraction Vf of 40%, what happens when using other values?

→ curate training dataset according to needs
→ material parameters can be changed in the material model
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