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Covariance relationships between data points

Data usually contains hidden interconnections

Sensor Signals

Wearable Sensors T

Brain Financial Human Action Recognition
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Covariance relationships between data points

Data usually contains hidden interconnections

Sensor Signals

Wearable Sensors T
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One way to capture these relations is through the covariance matrix
C=E[(x—p)(x—p)]
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Principal Component Analysis (PCA)

Project the data onto the covariance eigenspace
C=VAVT
x=VTx
Find the directions that maximize the variance of data points
Used for dimensionality reduction by selecting only a few eigenvectors

Principal directions




Topology Inference

Graphical Lasso, Collaborative Filtering, Graph Stationarity

fMRI fMRIROI Functional Functional
— Mean Time Series ~ Correlation Graph
M' Matrix
O
Brain
Parcellation

G={X,4,E" Y}
Graph construction block

Brain fMRI data Human motion sensor recordings

Use this topology for downstream processing




Finite-data effect

In practice, we work with estimates
c= % >, xtrxtT,
May not reflect the true underlying structure

Sample estimator C is noisy

When number of samples ¢ is of same order of data dimension N

Empirical covariance True covariance

"u "

Johnstone & Lu. On consistency and sparsity for principal components anal; dimensions. JASA. 2009




Finite-data effect on PCA

PCA is unstable to covariance estimation errors
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Finite-data effect on PCA

PCA is unstable to covariance estimation errors
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Problem setting: learn with covariances
in a stable way
efficiently
In a variety of settings: static, temporal, and biased data
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Outline

Covariance Neural Networks
Sparse VNNs
Spatiotemporal VNNs

Fair VNNs

Conclusions
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Covariance Data Relationships

Data sample x = [z1,...,2x]" with covariance C
Build a graph where:

the features are the node signals x;

the edges are the covariance values ¢;; — fully-connected graph




Covariance Filters

Definition: Graph convolution covariance filters

K
z=H(C)x = Z hy, CFx
k=0

learnable parameters: hy
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Covariance Neural Networks (VINNs)

Definition: Covariance filters followed by pointwise nonlinearities o

x' =o (Hl(é)xl—l) I=1,...,L.
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Stability of VNNs

We use the VNN on the noisy covariance matrix €
How does this affect the performance?

Stability for true H(C) vs. estimated H(C) covariance filter:

IH(C) -~ H(O)|




Stability of VNNs

‘We use the VNN on the noisy covariance matrix (@)

How does this affect the performance?

Stability for true H(C) vs. estimated H(C) covariance filter:

(@) -HE- 0[N =

t and N: number of samples and data dimension

McMillan



Stability of VNNs

We use the VNN on the noisy covariance matrix €

How does this affect the performance?

Stability for true H(C) vs. estimated H(C) covariance filter:

IH(&) —HC)|- 0 <¢m cwtgm)

Data distribution




Limitations of VNNs

However:

Low-data high-dimensional settings — sample covariance estimator is really bad!

Empirical covariance True covariance

" "

"u "n

Computationally inefficient — complexity O(N?)
Time-unaware — ignores temporal dependencies and distribution shifts
Unfair — if the data is biased
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Sparse Covariance Matrices

In practice, the true covariance matrix C is sparse

Empirical covariance ~ Hard-thr covariance  Soft-thr covariance True covariance

" " " "

Better estimators:
Hard thresholding:
[(_j]z _ Cij if |é7~]| > T/\/Z
J 0 otherwise
Soft thresholding:
[C] o {éi]‘ — sign(éij)T/\/f if |é”‘ > T/\/Z
iy =

0 otherwise

Stochastic sparsification: no need to choose a threshold




Sparse Covariance Neural Networks (S-VINNs)

Hard-thresholding;:
Stability for true H(C) vs. hard-thresholded H(C) covariance filter:

IH(C) - H(C)|| < <o

co: number of non-zero elements in C
co < ||C|| — tighter bound!
We need fewer data




Sparse Covariance Neural Networks (S-VINNs)

Soft-thresholding B
Stability for true H(C) vs. soft-thresholded H(C) covariance filter:

[H(C) - H(C)| < max (log(N/c2),1)

max (log(N/cg), 1) < Vlog N — even tighter bound!




Sparse Covariance Neural Networks (S-VINNs)

Stochastic sparsification
Stability for true H(C) vs. stochastically sparsified H(C) covariance filter:

E[|H(C)x — H(C)x||] <




Sparse Covariance Neural Networks (S-VINNs)

Stochastic sparsification
Stability for true H(C) vs. stochastically sparsified H(C) covariance filter:

PQ

E[|H(C)x — H(C)x|)?] < ey

o (N n HCHQth(Nt)>

p2the

Covariance estimation error




Sparse Covariance Neural Networks (S-VINNs)

Stochastic sparsification
Stability for true H(C) vs. stochastically sparsified H(C) covariance filter:

E[|H(C)x — H(C)x||*] < NP?Q + O((1 — p1)(1 — p2))

Covariance estimation error

Sparsification error




Numerical Results

Brain recordings: classify patient condition
Human Action Recognition: classify action performed

Epilepsy CNI MHEALTH Realdisp

Hthr I bod
- Sthr 0.6
RCV
ACV
Dense
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i i v
96 98 100 50 55 60 85 90 95 60 70
Accuracy Accuracy Accuracy Accuracy

S-VNNs are always faster and more accurate due to spurious correlation removal

ariance Neural Networks. under review,



Limitations of VNNs

However:

Time-unaware — ignores temporal dependencies and distribution shifts
Unfair — if the data is biased
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VNNs and Temporal Data

Setting: data are often time-varying and non-stationary

Financial Traffic




VNNs and Temporal Data

Setting: data are often time-varying and non-stationary

Financial

SpatioTemporal coVariance Neural Networks

CovariancnefstimatiOﬂ Spatial embeddings

Temporal sum
.

Traffic
Final embeddings
N

py ry Py A s
Ct2 Ct-1 Ct




Limitations of VNNs

However:

Unfair — if the data is biased
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Fair PCA

Principal Component Analysis (PCA) on unbalanced data

Principal component favors the majority group

Fair PCA: balance contributions of both groups

N}




Fair PCA

H Group |
o/ HEE Group 2
Principal Component Analysis (PCA) on unbalanced data W Fair
Principal component favors the majority group
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Fair PCA

Principal Component Analysis (PCA) on unbalanced data
Principal component favors the majority group

Fair PCA: balance contributions of both groups

PCA estimation in low-data setting is difficult
Minority group estimation is worse

Estimation errors lead to unfair treatment!

Solution: Fair Covariance Neural Networks
Intrinsically mitigate bias due to PCA estimation

Achieve fair group treatments
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Cavallo, Navarro, Segarra & Isufi. Fair Covariance Neural Networks.
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