Signal Processing on Expanding Graphs

Bishwadeep Das

TU Delft

Thanks to Elvin Isufi, Samuel Rey Escudero, Alan Hanjalic

May 1, 2025

Graphs and graph signals

Graphs (Networks)

- ▶ Captures pair-wise and higher order relationships between entities
- Examples: Social networks, sensor networks, citation networks
- ▶ Irregular domain, unlike time, grid.

Graph Signals

- ▶ Data associated with a graph
- ▶ Node level data: User opinions, temperature readings, paper label
- ▶ Different way to interpret data w.r.t an underlying topology

Graph signal processing

Processing data w.r.t the underlying graph topology for a specific task.

- ▶ Filtering: Topology aware filtering out certain variations in the signal [1]
- ▶ Interpolation: Filling in missing values at certain nodes from other node values [2]
- Classification: Assign a node to a class based on graph signals [3]
- ▶ Topology Identification: Estimate the graph structure (Edges) from graph signals [4]

Rating prediction in Recommender System

- ▶ Nodes: Users in a recommender system with known ratings
- ▶ Graph built from rating similarities between the users
- ▶ Graph signal: All user ratings for a movie
- Task: Predict unobserved ratings (Interpolation) [5], predicting associations between users and items (topology identification) [6]

Expanding graphs

- Example: New users joining a recommender system
- ▶ Received attention from network science via well-known growth models [7]
- ▶ In GSP, majority of works focus on graphs (static and dynamic) with fixed number of nodes [8, 9]
- ▶ Lacking a principled approach from a signal processing POV

Expanding graphs: Challenges

- **Dependence on connectivity**
 - \blacktriangleright Often the connections of new nodes are not known
 - ▶ Inability to use GSP tools to perform rating prediction (Cold start users)

Expanding graphs: Challenges

- **Dependence on connectivity**
 - \blacktriangleright Often the connections of new nodes are not known
 - ▶ Inability to use GSP tools to perform rating prediction (Cold start users)

► Streaming nature of data

- No Batch type data
- \blacktriangleright Need to efficiently re-train as new users arrive over time

Expanding graphs: Challenges

- **Dependence on connectivity**
 - Often the connections of new nodes are not known
 - ▶ Inability to use GSP tools to perform rating prediction (Cold start users)

► Streaming nature of data

- No Batch type data
- \blacktriangleright Need to efficiently re-train as new users arrive over time

Non-stationarity

- \blacktriangleright New nodes may represent different entities with different distribution of data
- ▶ Signal processing algorithms to adapt to the preferences of different users with different tastes

Overview of this talk

▶ Task aware GSP with filters under uncertainty

 \blacktriangleright Online graph filter design

▶ Online topology identification

Commonly used notation

- ▶ $\mathcal{G} = {\mathcal{V}, \mathcal{E}}$: Graph with node set \mathcal{V} and edge set \mathcal{E}
- ▶ $\mathbf{S} \in \mathbb{R}^{N \times N}$: Shift operator of an N node graph with $S_{ij} \neq 0$ if an edge exists between node i and j; $S_{ij} = 0$ otherwise
- $\blacktriangleright~\mathbf{x} \in \mathbb{R}^{N \times 1}$: Graph signal
- \blacktriangleright A: Adjacency matrix, L: Graph Laplacian matrix
- \blacktriangleright Graphs are undirected without self-loops, unless specified otherwise

Task aware GSP with filters under uncertainty

Graph filters

- ▶ Flexible, parametric, and localized operator for processing signals on graphs.
- \blacktriangleright Sx: Shifts x. each node weighs signals from immediate neighbours
- $\blacktriangleright {\bf S}^k {\bf x}_k$ shifts signal k times over the graph and accumulates information at each node up to its k-hop neighborhood
- \blacktriangleright Combine shifts to get output $\mathbf{y} = \mathbf{H}(\mathbf{S})\mathbf{x} = \sum_{k=0}^{K} h_k \mathbf{S}^k \mathbf{x}$
- ▶ h_k weighs the kth hop, filtering combines them.
- ▶ Used in a variety of applications for graphs of fixed size [10, 1]

Graph filters: Illustration

Stochastic attachment

- ▶ Let $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with N nodes $\{v_1, \ldots, v_N\}$ with $\mathbf{A} \in \mathbb{R}^{N \times N}$ as adjacency matrix
- ▶ v_+ incoming node forms graph $\mathcal{G}_+ = \{\mathcal{V} \cup v_+, \mathcal{E}_+\}$
- \blacktriangleright However, we do not know how v_+ will connect
- ▶ Let $\mathbf{a}_+ \in \mathbb{R}^N$ be a random vector containing attachment pattern of v_+

$$[\mathbf{a}_{+}]_{i} = \begin{cases} w_{i} & \text{with probability } p_{i} \\ 0 & \text{with probability } (1 - p_{i}) \end{cases}$$
(1)

▶ v_+ attaches to v_i with probability p_i with edge weight w_i

Modeling unknown connectivity

- \blacktriangleright w: vector of edge weights ${\bf p}$: vector of probabilities characterise the attachment behaviour of v_+
- \blacktriangleright The updated adjacency and Laplacian matrices are

$$\mathbf{A}_{+} = \begin{bmatrix} \mathbf{A} & \mathbf{a}_{+} \\ \mathbf{a}_{+}^{\top} & 0 \end{bmatrix}, \ \mathbf{L}_{+} = \begin{bmatrix} \mathbf{L} + \operatorname{diag}(\mathbf{a}_{+}) & -\mathbf{a}_{+} \\ -\mathbf{a}_{+}^{\top} & \mathbf{a}_{+}^{\top} \mathbf{1} \end{bmatrix}$$
(2)

- $\blacktriangleright \text{ Statistics of } \mathbf{a}_+ \colon \mathbb{E}[\mathbf{a}_+] = \mathbf{w} \circ \mathbf{p}, \quad \operatorname{cov}(\mathbf{a}_+) = \mathbf{\Sigma}_+ = \operatorname{diag}(\mathbf{w}^{\circ 2} \circ \mathbf{p} \circ (\mathbf{1} \mathbf{p}))$
- \blacktriangleright What is a good w, p? Our answer: It depends on the task!
- \blacktriangleright Target: Find w and p which learns attachment behviour of new nodes

Processing data with this attachment model

- ▶ Let $\mathbf{x} = [x_1, \dots, N]^\top$ be the existing graph signal on \mathcal{G}
- ▶ We want to predict x_+ at v_+
- \blacktriangleright For this we use a graph filter $\mathbf{h} \in \mathbb{R}^{K+1}$ of order K
- ▶ Goal: Learn **w**, **p** for predicting x_+
- ▶ Done via minimizing a task-aware loss

Key Idea

Key Idea: Learning from how other new users have already interacted with the network with their data

Key Idea: More concrete

Learn empirically from a batch of new nodes, each with its own attachment pattern \mathbf{a}_+ and signal x_+

Key Idea: More concrete

Learn empirically from a batch of new nodes, each with its own attachment pattern \mathbf{a}_+ and signal x_+

$$\min_{\mathbf{p},\mathbf{w}} \mathbb{E} \left[f_{\mathcal{T}}(\mathbf{p}, \mathbf{w}, \mathbf{a}_{t+}, \mathbf{x}, x_{+}) \right] + g_{\mathcal{T}}(\mathbf{p}, \mathbf{b}_{t+}) + h_{\mathcal{T}}(\mathbf{w}, \mathbf{a}_{t+})$$
subject to $\mathbf{p} \in \mathcal{P}, \mathbf{w} \in \mathcal{W}$

$$(3)$$

- ► $f_{\mathcal{T}}(\mathbf{p}, \mathbf{w}, \mathbf{a}_{t+}, \mathbf{x}, x_{+})$: Task-aware loss
- ▶ $g_{\mathcal{T}}(\mathbf{p}, \mathbf{b}_{t+})$: Priors on the attachment probabilities
- \blacktriangleright $h_{\mathcal{T}}(\mathbf{w}, \mathbf{a}_{t+})$: Priors on the weights
- ▶ Nonconvex problem, learnt by alternating projected gradient descent
- ▶ Analysis of convergence and perturbation behaviour in [11].

Experimental Setup

We compare with the following baselines:

- Uniformly-at-random: Heuristic, $\mathbf{p} = \frac{1}{N} \mathbf{1}$
- ▶ Degree-biased preferential attachment, Heuristic, $\mathbf{p} = \frac{\mathbf{d}}{\mathbf{1}^\top \mathbf{d}}$
- \blacktriangleright Data-based attachment: Learnt empirically from the \mathbf{a}_+ s during training
- \blacktriangleright Erdos Renyi and Barabasi Albert graphs for synthetic data
- **Movielens 100K** for real world data
- \blacktriangleright All hyperparameters found via cross validation

Synthetic Results

- ▶ Outperforms heuristical attachment models
- \blacktriangleright Typically, ℓ_2 regularizers on ${\bf p}$ and ${\bf w}$ work better
- \blacktriangleright We also found that training both ${\bf p}$ and ${\bf w}$ is more beneficial

Rating Prediction on Movielens 100K data

- Existing 35 nearest neighbor graph of N = 50 users for each movie
- ▶ Trained on individual movie with varying degrees of ratings (personalized)
- ▶ Trained on all movies as well

	Proposed	Attachment Only	Random	Preferential	Mean Prediction
Item 1	0.494	0.537(+8.7)	0.5417(+9.7)	0.527(+6.7)	0.669(+35.4)
Item 48	0.492	0.611(+24.2)	0.53(+7.7)	0.62(+26)	0.55(+11.8)
Item 459	0.462	0.49(+6)	0.52(+12.5)	0.40(+12.5)	1.07(+131)
Item 550	0.512	0.678(+32.4)	0.66(+29)	0.692(+35.2)	0.643(+25.6)
Item 57	0.049	0.057(+16.3)	0.41(+736)	0.20(+308)	0.32(+553)
Item 877	0.99	1.04(+5)	1.07(+8)	1.05(+6)	1.01(+1.72)
All Items	0.799	0.802(+0.38)	0.821(+2.75)	0.820(+2.63)	0.832(+4.1)

- Proposed approach does much better in personalized cases
- ▶ Differences evened out for all items

Overview

- ▶ Learning task-aware stochastic attachment model
- \blacktriangleright We can design graph filters under the same scenarios. More details in [12]
- ▶ Some results using graph convolutional neural networks¹
- ▶ Also possible to learn the attachment model and filters jointly
- ▶ However, all these works consider one incoming node added with replacement for training

Online graph filter design

Sequentially expanding graphs

- ▶ Graphs with growing number of nodes
- ▶ Delay-sensitive applications
- ▶ Time-varying nature of data at incoming node

Scenario

Challenges

 \blacktriangleright Streaming nature of the growing graph and data over it

Lack of connectivity of the incoming nodes (i.e., cold start in recommendation)

Targets

▶ How to adapt the graph filter to the change in topology?

▶ How to design the filter when the connectivity is not known and the graph is growing?

Proposed Solution

▶ Train graph filters online, i.e., update with each incoming node

▶ Use stochastic attachment when node information is not known and update filters online

Adapt the stochastic attachment pattern to predict the attachment over time

▶ Obtain performance bounds w.r.t known attachment patterns

Problem Formulation: Deterministic attachment

▶ Starting graph $\mathcal{G}_0 = \{\mathcal{V}_0, \mathcal{E}_0\}$: N_0 nodes, M_0 edges, adj. matrix \mathbf{A}_0 .

▶ v_1, \ldots, v_T be T sequentially incoming nodes, node v_t attaches to graph \mathcal{G}_{t-1}

▶ Vector $\mathbf{a}_t = [a_1, \dots, a_{N_{t-1}}]^\top \in \mathbb{R}^{N_{t-1}}$ represents directed connectivity of v_t at time t

▶ The expanded adjacency matrix at time $t \ \mathbf{A}_t \in \mathbb{R}^{N_t \times N_t}$ equals

$$\mathbf{A}_t = \begin{bmatrix} \mathbf{A}_{t-1} & \mathbf{0} \\ \mathbf{a}_t^\top & \mathbf{0} \end{bmatrix}$$

Node v_t attaches to $v_i \in \mathcal{V}_{t-1}$ obeying Prob. vector $\mathbf{p}_t \in \mathbb{R}^{N_{t-1}}$ and weights $\mathbf{w}_t \in \mathbb{R}^{N_{t-1}}$

▶ Node v_t attaches to $v_i \in \mathcal{V}_{t-1}$ obeying Prob. vector $\mathbf{p}_t \in \mathbb{R}^{N_{t-1}}$ and weights $\mathbf{w}_t \in \mathbb{R}^{N_{t-1}}$

 $\blacktriangleright \text{ Time-varying statistics of } \mathbf{a}_t: \mathbb{E}\left[\mathbf{a}_t\right] = \mathbf{p}_t \circ \mathbf{w}_t \ ; \ \boldsymbol{\Sigma}_t = \mathsf{diag}(\mathbf{w}_t^{\circ 2} \circ \mathbf{p}_t \circ (\mathbf{1} - \mathbf{p}_t))$

▶ Node v_t attaches to $v_i \in \mathcal{V}_{t-1}$ obeying Prob. vector $\mathbf{p}_t \in \mathbb{R}^{N_{t-1}}$ and weights $\mathbf{w}_t \in \mathbb{R}^{N_{t-1}}$

 $\blacktriangleright \text{ Time-varying statistics of } \mathbf{a}_t: \mathbb{E}\left[\mathbf{a}_t\right] = \mathbf{p}_t \circ \mathbf{w}_t \ ; \ \boldsymbol{\Sigma}_t = \mathsf{diag}(\mathbf{w}_t^{\circ 2} \circ \mathbf{p}_t \circ (\mathbf{1} - \mathbf{p}_t))$

▶ Parameter of interest: an order K graph filter $\mathbf{h} = [h_0, \dots, h_K]^\top$

Node v_t attaches to $v_i \in \mathcal{V}_{t-1}$ obeying Prob. vector $\mathbf{p}_t \in \mathbb{R}^{N_{t-1}}$ and weights $\mathbf{w}_t \in \mathbb{R}^{N_{t-1}}$

 $\blacktriangleright \text{ Time-varying statistics of } \mathbf{a}_t: \mathbb{E}\left[\mathbf{a}_t\right] = \mathbf{p}_t \circ \mathbf{w}_t \ ; \ \boldsymbol{\Sigma}_t = \mathsf{diag}(\mathbf{w}_t^{\circ 2} \circ \mathbf{p}_t \circ (\mathbf{1} - \mathbf{p}_t))$

▶ Parameter of interest: an order K graph filter $\mathbf{h} = [h_0, \dots, h_K]^\top$

$$\blacktriangleright \text{ Output at new node } [\tilde{\mathbf{y}}_t]_{N_t} := \hat{x}_t = \mathbf{a}_t^\top \sum_{k=1}^K h_k \mathbf{A}_{t-1}^{k-1} \tilde{\mathbf{x}}_t = \mathbf{a}_t^\top \mathbf{A}_{x,t-1} \mathbf{h}$$

- ▶ At time t, v_t appears
- \blacktriangleright \mathbf{a}_t used in the deterministic setting

- ▶ At time t, v_t appears
- \blacktriangleright **a**_t used in the deterministic setting
- ▶ Use current filter $\mathbf{h}(t-1)$ to predict \hat{x}_t

- ▶ At time t, v_t appears
- $\blacktriangleright~\mathbf{a}_t$ used in the deterministic setting
- ▶ Use current filter $\mathbf{h}(t-1)$ to predict \hat{x}_t
- \blacktriangleright Known loss incurred w.r.t true signal x_t revealed as

 $l_t(\mathbf{h}, x_t) = f_t(\mathbf{h}, x_t) + r(\mathbf{h})$

- ▶ At time t, v_t appears
- \blacktriangleright **a**_t used in the deterministic setting
- ▶ Use current filter $\mathbf{h}(t-1)$ to predict \hat{x}_t
- \blacktriangleright Known loss incurred w.r.t true signal x_t revealed as

 $l_t(\mathbf{h}, x_t) = f_t(\mathbf{h}, x_t) + r(\mathbf{h})$

▶ Update $\mathbf{h}(t)$ based on the loss and current estimate $\mathbf{h}(t-1)$.

Online graph filtering

- ▶ At time t, v_t appears
- \blacktriangleright **a**_t used in the deterministic setting
- ▶ Use current filter $\mathbf{h}(t-1)$ to predict \hat{x}_t
- \blacktriangleright Known loss incurred w.r.t true signal x_t revealed as

 $l_t(\mathbf{h}, x_t) = f_t(\mathbf{h}, x_t) + r(\mathbf{h})$

- ▶ Update $\mathbf{h}(t)$ based on the loss and current estimate $\mathbf{h}(t-1)$.
- $\blacktriangleright \ \mathbf{a}_t$ revealed in the stochastic setting

Deterministic online filtering

► Loss function
$$l_t(\mathbf{h}, x_t) = \frac{1}{2} (\mathbf{a}_t^\top \mathbf{A}_{x,t-1} \mathbf{h} - x_t)^2 + \mu ||\mathbf{h}||_2^2$$
 with $\mu > 0$.

▶ Update: Projected online gradient descent [13]

$$\mathbf{h}(t) = \prod_{\mathcal{H}} (\mathbf{h}(t-1) - \eta \nabla_h l_t(\mathbf{h}, x_t) |_{\mathbf{h}(t-1)})$$

where $\prod_{\mathcal{H}}(\cdot)$ denotes projection on \mathcal{H} .

▶ Computational complexity of order $\mathcal{O}(K(M_t + M_{\max})), M_{\max}$: maximum edges formed by v_t

Stochastic online filtering

 \blacktriangleright Predefined \mathbf{p}_t and \mathbf{w}_t based on stochastic attachment rule and \mathbf{w}_t for all t

 $\blacktriangleright \text{ Loss function } l_t(\mathbf{h}, x_t) = \mathbb{E}\left[\frac{1}{2}(\mathbf{a}_t^\top \mathbf{A}_{x,t-1}\mathbf{h} - x_t)^2\right] + \mu ||\mathbf{h}||_2^2 \text{ with } \mu > 0.$

▷ Computational complexity at time t of order $\mathcal{O}(K(M_t + N_t))$

▶ Potential drawback: Reliance on one type of attachment rule

 \triangleright Update \mathbf{p}_t and \mathbf{w}_t for all t, i.e., adapt to the incoming node behaviour

 \triangleright Update \mathbf{p}_t and \mathbf{w}_t for all t, i.e., adapt to the incoming node behaviour

 \blacktriangleright Dictionary of attachment rules \mathbf{P}_t and weights \mathbf{W}_t updated across time

 \triangleright Update \mathbf{p}_t and \mathbf{w}_t for all t, i.e., adapt to the incoming node behaviour

 \blacktriangleright Dictionary of attachment rules \mathbf{P}_t and weights \mathbf{W}_t updated across time

▶ At time t we have $\bar{\mathbf{p}}_t = \mathbf{P}_{t-1}\mathbf{m}$ and $\bar{\mathbf{w}}_t = \mathbf{W}_{t-1}\mathbf{n}$

 \blacktriangleright Update \mathbf{p}_t and \mathbf{w}_t for all t, i.e., adapt to the incoming node behaviour

 \blacktriangleright Dictionary of attachment rules \mathbf{P}_t and weights \mathbf{W}_t updated across time

▶ At time t we have $\bar{\mathbf{p}}_t = \mathbf{P}_{t-1}\mathbf{m}$ and $\bar{\mathbf{w}}_t = \mathbf{W}_{t-1}\mathbf{n}$

Projected online gradient descent but update $\mathbf{h}(t)$, $\mathbf{m}(t)$, and $\mathbf{n}(t)$

 \blacktriangleright Update \mathbf{p}_t and \mathbf{w}_t for all t, i.e., adapt to the incoming node behaviour

 \blacktriangleright Dictionary of attachment rules \mathbf{P}_t and weights \mathbf{W}_t updated across time

▶ At time t we have $\bar{\mathbf{p}}_t = \mathbf{P}_{t-1}\mathbf{m}$ and $\bar{\mathbf{w}}_t = \mathbf{W}_{t-1}\mathbf{n}$

Projected online gradient descent but update $\mathbf{h}(t)$, $\mathbf{m}(t)$, and $\mathbf{n}(t)$

▶ Computational complexity at time t of order $\mathcal{O}(K(M_0 + N_t) + N_t(M))$

Regret:
$$R_T(\mathbf{h}^*) = \sum_{t=1}^T l_t(\mathbf{h}_t, x_t) - l_t(\mathbf{h}^*, x_t)$$

Regret:
$$R_T(\mathbf{h}^*) = \sum_{t=1}^T l_t(\mathbf{h}_t, x_t) - l_t(\mathbf{h}^*, x_t)$$

Need to bound it!

Regret:
$$R_T(\mathbf{h}^*) = \sum_{t=1}^T l_t(\mathbf{h}_t, x_t) - l_t(\mathbf{h}^*, x_t)$$

Need to bound it!

Deterministic regret

$$\frac{1}{T}R_T(\mathbf{h}^{\star}) \le \frac{||\mathbf{h}^{\star}||_2^2}{2\eta T} + \frac{\eta}{2}L_d^2$$

Regret:
$$R_T(\mathbf{h}^*) = \sum_{t=1}^T l_t(\mathbf{h}_t, x_t) - l_t(\mathbf{h}^*, x_t)$$

Need to bound it!

Deterministic regret

$$\frac{1}{T}R_T(\mathbf{h}^{\star}) \le \frac{||\mathbf{h}^{\star}||_2^2}{2\eta T} + \frac{\eta}{2}L_d^2$$

Stochastic regret

$$\frac{1}{T}R_{s,T}(\mathbf{h}^{\star}) \leq \frac{1}{T} \left(\sum_{t=1}^{T} w_{h}^{2} Y^{2}(||\mathbf{p}_{t}||_{2}^{2} + M_{max}) + 2Rw_{h} Y \sqrt{||\mathbf{p}_{t}||_{2}^{2} + M_{max}} + w_{h}^{2} Y^{2} \bar{\sigma}_{t}^{2} + L_{d} ||\mathbf{h}^{s}(t-1) - \mathbf{h}^{d}(t-1)|| \right) + \frac{||\mathbf{h}^{\star}||_{2}^{2}}{2\eta} + \frac{\eta}{2} L_{d}^{2} T$$
(4)

Stochastic regret depends on choice of attachment rule

Results

Compare with (1) Batch filter, (2) pre-trained filter, (3) Online kernel-based methods OKL and OMHKL, (4) Prediction Correction-based Online filtering (PC-OGF)

	Synthetic Data						Real Data			
Method	Filter		WMean		Kernel		Movielens100K		COVID	
	NRMSE	Sdev	NRMSE	Sdev	NRMSE	Sdev	NRMSE	Sdev	NRMSE	Sdev
D-OGF (ours)	0.038	0.04	0.02	0.02	0.28	0.05	0.26	0.01	0.21	0.02
S-OGF (ours)	0.26	0.04	0.3	0.06	0.36	0.11	0.28	0.007	0.31	0.02
Ada-OGF (ours)	0.26	0.04	0.33	0.07	0.48	0.21	0.28	0.007	0.26	0.007
PC-OGF (ours)	0.22	0.04	0.26	0.04	0.32	0.06	0.29	0.01	0.26	0.003
Batch	0.05	0.03	0.08	0.04	1.12	0.26	6.7	0.1	0.17	0.03
pre-trained	0.13	0.07	0.10	0.05	0.59	0.36	0.84	0.02	2.5	0.9
OKL	0.24	0.03	0.27	0.05	0.30	0.06	0.27	0.01	0.25	0.02
OMHKL	0.25	0.04	0.4	0.05	0.5	0.2	0.27	0.01	0.25	0.02

Results

Normalized cumulative regret for stochastic online filtering on synthetic data

Overview

▶ We proposed online filtering over graphs that grow sequentially over time. More details in [14]

Extension to growing simplicial complexes in [15]

▶ Provide regret analysis in terms of attachment behaviour of incoming nodes

▶ Numerical results indicate online filters perform collectively better than kernel methods which do not utilize the data, pre-trained filters, and even a batch filter.

Online topology identification

Graph Topology Identification

- ▶ Graph topology is often unknown or unavailable
- ▶ Topology identification concerns learning the topology associated with observed data [4]
- ▶ Typically uses prior information linking the graph with the topology, e.g., Gaussianity [16], smoothness [17], stationarity [18]

Contribution

- Existing works focus on estimating graphs (static or dynamic) of fixed size [19, 20, 21]
- ▶ Instead, we focus on cases where the underlying graph grows steadily in size over time
- Examples: New companies joining financial networks [22]
- **Target** Learn the growing topology

Fundamentals of graph learning

- ▶ $\mathbf{X} \in \mathbb{R}^{N \times T}$: Signals collected over T time instances
- ▶ \mathcal{G} involved via the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ (e.g. \mathbf{A}, \mathbf{L})
- \blacktriangleright Estimate ${\bf S}$ from observed signals ${\bf X} \in \mathbb{R}^{N \times T}$ solving

$$\min_{\mathbf{S}\in\mathcal{S}} \quad \mathcal{L}(\mathbf{S}, \hat{\mathbf{C}}) + \lambda \|\mathbf{S}\|_1 \tag{5}$$

- ▶ Loss \mathcal{L} relates **S** and sample covariance $\hat{\mathbf{C}} = \frac{1}{T} \mathbf{X} \mathbf{X}^{\top}$
- \triangleright ℓ_1 norm promotes sparsity

Expanding graphs

- \triangleright In the expanding graph setting new nodes may arrive every time instant t
- ▶ The size of the graph increases, i.e., $|\mathcal{V}_t| = N_t \leq |\mathcal{V}_{t+1}| = N_t + 1$

Expanding graphs

▶ Sequential arrival of nodes results in the following block structure

$$\mathbf{S}_{t+1} = \begin{bmatrix} [\mathbf{S}_{t+1}]_{\mathcal{V}_t} & [\mathbf{S}_{t+1}]_{\mathcal{V}_t,\mathcal{I}_{t+1}} \\ [\mathbf{S}_{t+1}]_{\mathcal{I}_{t+1},\mathcal{V}_t} & [\mathbf{S}_{t+1}]_{\mathcal{I}_t} \end{bmatrix}, \qquad \mathbf{x}_{t+1} = \begin{bmatrix} [\mathbf{x}_{t+1}]_{\mathcal{V}_t} \\ [\mathbf{x}_{t+1}]_{\mathcal{I}_t} \end{bmatrix}$$

▶ Where \mathcal{I}_t denoting the indexes of incoming nodes at time t

Batch Solution

- \blacktriangleright One option is to learn the new topology \mathbf{S}_t^* every time a new node and its data appears
- We calculate the sample covariance $\hat{\mathbf{C}}_t$ and solve

$$\mathbf{S}_{t}^{*} = \operatorname{argmin}_{\mathbf{S} \in \mathcal{S}_{N_{t}}} \mathcal{L}(\mathbf{S}, \hat{\mathbf{C}}_{t}) + \alpha d([\mathbf{S}]_{\mathcal{V}_{t-1}}, \mathbf{S}_{t-1}^{*}) + \lambda \|\mathbf{S}\|_{1}$$
(6)

- Second term accounts for smooth variation between old nodes
- \blacktriangleright Provide high-quality estimates \mathbf{S}_t^*
- Excessive computational cost, not fit for delay-sensitive applications

Online Algorithm

- **Step 1**: At time $t, \mathbf{x}_t \in \mathbb{R}^{N_t}$ is available
- ▶ Update the covariance matrix as

$$\hat{\mathbf{C}}_t = \mathbf{M}_1 \circ \underline{\hat{\mathbf{C}}}_{t-1}^{(N_t)} + \mathbf{M}_2 \circ \mathbf{x}_t \mathbf{x}_t^{\top}$$
(7)

 \blacktriangleright Mask \mathbf{M}_1 scales importance of past observations, \mathbf{M}_2 that of the latest

Online Algorithm

- **Step 1**: At time $t, \mathbf{x}_t \in \mathbb{R}^{N_t}$ is available
- ▶ Update the covariance matrix as

$$\hat{\mathbf{C}}_t = \mathbf{M}_1 \circ \underline{\hat{\mathbf{C}}}_{t-1}^{(N_t)} + \mathbf{M}_2 \circ \mathbf{x}_t \mathbf{x}_t^{\top}$$
(7)

- \blacktriangleright Mask \mathbf{M}_1 scales importance of past observations, \mathbf{M}_2 that of the latest
- **Step 2**: Loss function at time t given by

$$f_t(\mathbf{S}) = \mathcal{L}(\mathbf{S}, \hat{\mathbf{C}}_t) + \alpha d([\mathbf{S}]_{\mathcal{V}_{t-1}}, \hat{\mathbf{S}}_{t-1}) + ||\mathbf{S}||_1$$
(8)

- ► Proximal gradient step: $\check{\mathbf{S}}_t = \Pi_{\mathcal{S}_{N_t}} \left(T_{\eta\lambda} \left(\hat{\underline{\mathbf{S}}}_{t-1}^{(N_t)} \eta \nabla f(\hat{\underline{\mathbf{S}}}_{t-1}^{(N_t)}) \right) \right)$
- ▶ Projection on to constraint set of $N_t \times N_t$ shift operators

Online Algorithm

- **Step 1**: At time $t, \mathbf{x}_t \in \mathbb{R}^{N_t}$ is available
- ▶ Update the covariance matrix as

$$\hat{\mathbf{C}}_t = \mathbf{M}_1 \circ \underline{\hat{\mathbf{C}}}_{t-1}^{(N_t)} + \mathbf{M}_2 \circ \mathbf{x}_t \mathbf{x}_t^{\top}$$
(7)

- \blacktriangleright Mask \mathbf{M}_1 scales importance of past observations, \mathbf{M}_2 that of the latest
- **Step 2**: Loss function at time t given by

$$f_t(\mathbf{S}) = \mathcal{L}(\mathbf{S}, \hat{\mathbf{C}}_t) + \alpha d([\mathbf{S}]_{\mathcal{V}_{t-1}}, \hat{\mathbf{S}}_{t-1}) + ||\mathbf{S}||_1$$
(8)

- ► Proximal gradient step: $\check{\mathbf{S}}_t = \Pi_{\mathcal{S}_{N_t}} \left(T_{\eta\lambda} \left(\hat{\underline{\mathbf{S}}}_{t-1}^{(N_t)} \eta \nabla f(\hat{\underline{\mathbf{S}}}_{t-1}^{(N_t)}) \right) \right)$
- ▶ Projection on to constraint set of $N_t \times N_t$ shift operators
- **Step 3**: update estimate GSO as $\hat{\mathbf{S}}_t = h\check{\mathbf{S}}_t + (1-h)\hat{\mathbf{S}}_{t-1}^{(N_t)}$

The Gaussian case

- Assume signals are drawn from Gaussian distribution $\mathbf{x}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{S}_t^{-1})$
- ▶ GSO estimated maximizing the regularized log-likelihood [16]

$$\nabla f_t(\mathbf{S}) = \hat{\mathbf{C}}_t - (\mathbf{S} + \epsilon \mathbf{I})^{-1} + \alpha \nabla d([\mathbf{S}]_{\mathcal{V}_{t-1}}, \hat{\mathbf{S}}_{t-1})$$
$$\Pi_{\mathcal{S}_{N_t}}(\mathbf{S}) = \mathbf{V} \min\left\{ \max\left\{\mathbf{\Lambda}, 0\right\}, \sigma^{1/2} \right\} \mathbf{V}^{\top}$$

- \blacktriangleright Gradient from log-likelihood and projection to PSD matrices set
- ▶ Computational complexity of $\mathcal{O}(N_t^3)$ with over-the-shelf methods

- ▶ We want to know how accurately the online approach can track the growing topology
- ▶ Cumulative regret measures error made over a sequence

$$\sum_{t=1}^{T} \|\hat{\mathbf{S}}_t - \mathbf{S}_t^*\|_F \tag{9}$$

▶ With step size $\eta \leq \epsilon^2$, dynamic cumulative regret is upper bounded by

$$\sum_{t=1}^{T} \|\hat{\mathbf{S}}_{t} - \mathbf{S}_{t}^{*}\|_{F} \le K_{1} + K_{2} \sum_{t=2}^{T} \|\mathbf{S}_{t}^{*} - \underline{\mathbf{S}}_{t-1}^{*(N_{t})}\|_{F}$$
(10)

▶ Bounded by how much the optimal topology changes.

Numerical evaluation

- \blacktriangleright ER graphs growing from 100 to 120 nodes with different frequencies
- ▶ Low-frequency setting: 20 new nodes arrive simultaneously
- ▶ High-frequency setting: nodes arrive in 4 groups of 5 nodes

 \blacktriangleright Recovers from disruptions in both settings, insufficient recovery tme \implies error accumulation

Numerical Evaluation

- ▶ COVID-19 dataset with incidence rates reported by various U.S. states and territories.
- Start with 46 nodes and reports from additional states are available at $t = \{312, 652\}$.

- Error rapidly increases after t = 350 coinciding with a rise in incident rates.
- ▶ Our algorithm adapts to the new topology and the error decreases.

Overview

- ▶ An online graph learning method tailored to expanding graphs
- ▶ Define efficient node-dependent covariance updates
- ▶ Propose an algorithm based on PPG descent to learn from streaming data
- ▶ Bounded dynamic regret

Challenges and further possibilities

Overview

- ▶ A SP-based principled framework for expanding graphs
- \blacktriangleright Stochastic model-based attachments for unknown connectivity
- ▶ Online approaches for SP and Topology identification with some theoretical analysis
- Relatively well compared to known topology

Challenges and further possibilities

Overview

- ▶ A SP-based principled framework for expanding graphs
- \blacktriangleright Stochastic model-based attachments for unknown connectivity
- ▶ Online approaches for SP and Topology identification with some theoretical analysis
- Relatively well compared to known topology

Challenges and further possibilities

- $\blacktriangleright\,$ Modeling data on expanding graphs a challenge
- ▶ More refined stochastic attachment models
- ▶ Potential for using physics-driven models involving the spectrum
- \blacktriangleright Extension to expanding higher order networks possible

END

References I

- E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, "Graph filters for signal processing and machine learning on graphs," *IEEE Transactions on Signal Processing*, vol. 72, pp. 4745–4781, 2024.
- X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, "Lightgen: Simplifying and powering graph convolution network for recommendation," in *Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval*, pp. 639–648, 2020.
- **F**. Gama, A. G. Marques, G. Leus, and A. Ribeiro, "Convolutional neural network architectures for signals supported on graphs," *IEEE Transactions on Signal Processing*, vol. 67, no. 4, pp. 1034–1049, 2018.
- G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, "Connecting the Dots: Identifying Network Structure via Graph Signal Processing," *IEEE Signal Process. Mag.*, vol. 36, pp. 16–43, May 2019.

W. Huang, A. G. Marques, and A. R. Ribeiro, "Rating Prediction via Graph Signal Processing," *IEEE Trans. Signal Process.*, vol. 66, pp. 5066–5081, Oct. 2018.

References II

- **Z**. Huang, X. Li, and H. Chen, "Link prediction approach to collaborative filtering," in *Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries*, pp. 141–142, 2005.
- A.-L. Barabási *et al.*, *Network science*. Cambridge university press, 2016.
- A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst, "Graph Signal Processing: Overview, Challenges, and Applications," *Proc. IEEE*, vol. 106, pp. 808–828, May 2018.
- D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," *IEEE Signal Process. Mag.*, vol. 30, no. 3, pp. 83–98, 2013.
- E. Isufi, A. Loukas, A. Simonetto, and G. Leus, "Filtering random graph processes over random time-varying graphs," *IEEE Trans. Signal Process.*, vol. 65, no. 16, pp. 4406–4421, 2017.

References III

- B. Das, A. Hanjalic, and E. Isufi, "Task-aware connectivity learning for incoming nodes over growing graphs," *IEEE Trans. Signal Inf. Process. Netw.*, vol. 8, pp. 894–906, 2022.
- B. Das and E. Isufi, "Graph filtering over expanding graphs," in *IEEE Data Science Learning Workshop Processing (DSLW)*, May 2022.
- F. Orabona, "A modern introduction to online learning," *arXiv preprint arXiv:1912.13213*, 2019.
- B. Das and E. Isufi, "Online graph filtering over expanding graphs," *IEEE Transactions on Signal Processing*, 2024.
- M. Yang, B. Das, and E. Isufi, "Online edge flow prediction over expanding simplicial complexes," in *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, IEEE, 2023.
- J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covariance estimation with the graphical lasso," *Biostatistics*, vol. 9, no. 3, pp. 432–441, 2008.

References IV

- V. Kalofolias, "How to learn a graph from smooth signals," in Art. Intel. Stat., pp. 920–929, PMLR, 2016.
- A. Buciulea, M. Navarro, S. Rey, S. Segarra, and A. G. Marques, "Online network inference from graph-stationary signals with hidden nodes," *arXiv preprint arXiv:2409.08760*, 2024.
- D. Hallac, Y. Park, S. Boyd, and J. Leskovec, "Network inference via the time-varying graphical lasso," in *Intl. Conf. Knowledge Discovery Data Mining*, pp. 205–213, 2017.
- **R**. Shafipour, A. Hashemi, G. Mateos, and H. Vikalo, "Online topology inference from streaming stationary graph signals," in *2019 IEEE Data Science Workshop (DSW)*, pp. 140–144, IEEE, 2019.
- A. Natali, M. Coutino, E. Isufi, and G. Leus, "Online time-varying topology identification via prediction-correction algorithms," in *IEEE Intl. Conf. Acoustics, Speech and Signal Process. (ICASSP)*, pp. 5400–5404, 2021.

J. V. De Miranda Cardoso and D. P. Palomar, "Learning undirected graphs in financial markets," in *Conf. Signals, Syst., Computers (Asilomar)*, pp. 741–745, IEEE, 2020.