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Graphs and graph signals

Graphs (Networks)
▶ Captures pair-wise and higher order relationships between entities

▶ Examples: Social networks, sensor networks, citation networks

▶ Irregular domain, unlike time, grid.

Graph Signals
▶ Data associated with a graph

▶ Node level data: User opinions, temperature readings, paper label

▶ Different way to interpret data w.r.t an underlying topology
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Graph signal processing

Processing data w.r.t the underlying graph topology for a specific task.

▶ Filtering: Topology aware filtering out certain variations in the signal [1]

▶ Interpolation: Filling in missing values at certain nodes from other node values [2]

▶ Classification: Assign a node to a class based on graph signals [3]

▶ Topology Identification: Estimate the graph structure (Edges) from graph signals [4]
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Rating prediction in Recommender System

▶ Nodes: Users in a recommender system with known ratings

▶ Graph built from rating similarities between the users

▶ Graph signal: All user ratings for a movie

▶ Task: Predict unobserved ratings (Interpolation) [5], predicting associations between users and items
(topology identification) [6]
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Expanding graphs

▶ Example: New users joining a recommender system
▶ Received attention from network science via well-known growth models [7]
▶ In GSP, majority of works focus on graphs (static and dynamic) with fixed number of nodes [8, 9]
▶ Lacking a principled approach from a signal processing POV
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Expanding graphs: Challenges

▶ Dependence on connectivity
▶ Often the connections of new nodes are not known

▶ Inability to use GSP tools to perform rating prediction (Cold start users)

▶ Streaming nature of data
▶ No Batch type data

▶ Need to efficiently re-train as new users arrive over time

▶ Non-stationarity
▶ New nodes may represent different entities with different distribution of data

▶ Signal processing algorithms to adapt to the preferences of different users with different tastes
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Overview of this talk

▶ Task aware GSP with filters under uncertainty

▶ Online graph filter design

▶ Online topology identification
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Commonly used notation

▶ G = {V, E}: Graph with node set V and edge set E

▶ S ∈ RN×N : Shift operator of an N node graph with Sij ̸= 0 if an edge exists between
node i and j; Sij = 0 otherwise

▶ x ∈ RN×1: Graph signal

▶ A: Adjacency matrix, L: Graph Laplacian matrix

▶ Graphs are undirected without self-loops, unless specified otherwise
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Task aware GSP with filters under uncertainty
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Graph filters

▶ Flexible, parametric, and localized operator for processing signals on graphs.

▶ Sx: Shifts x. each node weighs signals from immediate neighbours

▶ Skxk shifts signal k times over the graph and accumulates information at each node up
to its k-hop neighborhood

▶ Combine shifts to get output y = H(S)x =
∑K

k=0 hkS
kx

▶ hk weighs the kth hop, filtering combines them.

▶ Used in a variety of applications for graphs of fixed size [10, 1]
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Graph filters: Illustration
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Stochastic attachment

▶ Let G = {V, E} with N nodes {v1, . . . , vN} with A ∈ RN×N as adjacency matrix

▶ v+ incoming node forms graph G+ = {V ∪ v+, E+}

▶ However, we do not know how v+ will connect

▶ Let a+ ∈ RN be a random vector containing attachment pattern of v+

▶

[a+]i =

{
wi with probability pi
0 with probability (1− pi)

(1)

▶ v+ attaches to vi with probability pi with edge weight wi
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Modeling unknown connectivity

▶ w: vector of edge weights p : vector of probabilities characterise the attachment
behaviour of v+

▶ The updated adjacency and Laplacian matrices are

A+ =

[
A a+
a⊤+ 0

]
, L+ =

[
L+ diag(a+) −a+

−a⊤+ a⊤+1

]
(2)

▶ Statistics of a+: E[a+] = w ◦ p, cov(a+) = Σ+ = diag(w◦2 ◦ p ◦ (1− p))

▶ What is a good w, p? Our answer: It depends on the task!

▶ Target: Find w and p which learns attachment behviour of new nodes
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Processing data with this attachment model

▶ Let x = [x1, . . . ,N ]⊤ be the existing graph signal on G

▶ We want to predict x+ at v+

▶ For this we use a graph filter h ∈ RK+1 of order K

▶ Goal: Learn w, p for predicting x+

▶ Done via minimizing a task-aware loss
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Key Idea

Key Idea: Learning from how other new users have already interacted with the network with their data
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Key Idea: More concrete

Learn empirically from a batch of new nodes, each with its own attachment pattern a+
and signal x+

min.
p,w

E
[
fT (p,w,at+,x, x+)

]
+ gT (p,bt+) + hT (w,at+)

subject to p ∈ P,w ∈ W
(3)

▶ fT (p,w,at+,x, x+): Task-aware loss
▶ gT (p,bt+): Priors on the attachment probabilities
▶ hT (w,at+): Priors on the weights
▶ Nonconvex problem, learnt by alternating projected gradient descent
▶ Analysis of convergence and perturbation behaviour in [11].
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Experimental Setup

We compare with the following baselines:
▶ Uniformly-at-random: Heuristic, p = 1

N 1

▶ Degree-biased preferential attachment, Heuristic, p = d
1⊤d

▶ Data-based attachment : Learnt empirically from the a+s during training

▶ Erdos Renyi and Barabasi Albert graphs for synthetic data

▶ Movielens 100K for real world data

▶ All hyperparameters found via cross validation
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Synthetic Results
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MSE Erdős-Rényi graph Barabasi-Albert graph
Rule Prop. Pref. Rand. Prop. Pref. Rand.

Mean Error 0.37 0.64 0.73 0.84 1.72 1.35
Std Dev. 0.04 0.04 0.04 0.11 0.11 0.11

▶ Outperforms heuristical attachment models
▶ Typically, ℓ2 regularizers on p and w work better
▶ We also found that training both p and w is more beneficial
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Rating Prediction on Movielens 100K data

▶ Existing 35 nearest neighbor graph of N = 50 users for each movie
▶ Trained on individual movie with varying degrees of ratings (personalized)
▶ Trained on all movies as well

Proposed Attachment Only Random Preferential Mean Prediction
Item 1 0.494 0.537(+8.7) 0.5417(+9.7) 0.527(+6.7) 0.669(+35.4)
Item 48 0.492 0.611(+24.2) 0.53(+7.7) 0.62(+26) 0.55(+11.8)
Item 459 0.462 0.49(+6) 0.52(+12.5) 0.40(+12.5) 1.07(+131)
Item 550 0.512 0.678(+32.4) 0.66(+29) 0.692(+35.2) 0.643(+25.6)
Item 57 0.049 0.057(+16.3) 0.41(+736) 0.20(+308) 0.32(+553)
Item 877 0.99 1.04(+5) 1.07(+8) 1.05(+6) 1.01(+1.72)
All Items 0.799 0.802(+0.38) 0.821(+2.75) 0.820(+2.63) 0.832(+4.1)

▶ Proposed approach does much better in personalized cases
▶ Differences evened out for all items
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Overview

▶ Learning task-aware stochastic attachment model

▶ We can design graph filters under the same scenarios. More details in [12]

▶ Some results using graph convolutional neural networks1

▶ Also possible to learn the attachment model and filters jointly

▶ However, all these works consider one incoming node added with replacement for
training

1https://resolver.tudelft.nl/uuid:44218abd-4b7e-4ae8-8f24-a2432acdacdc
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Online graph filter design
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Sequentially expanding graphs

▶ Graphs with growing number of nodes
▶ Delay-sensitive applications
▶ Time-varying nature of data at incoming node
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Scenario

Challenges
▶ Streaming nature of the growing graph and data over it

▶ Lack of connectivity of the incoming nodes (i.e., cold start in recommendation)

Targets
▶ How to adapt the graph filter to the change in topology?

▶ How to design the filter when the connectivity is not known and the graph is growing?
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Proposed Solution

▶ Train graph filters online, i.e., update with each incoming node

▶ Use stochastic attachment when node information is not known and update filters
online

▶ Adapt the stochastic attachment pattern to predict the attachment over time

▶ Obtain performance bounds w.r.t known attachment patterns
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Problem Formulation: Deterministic attachment

▶ Starting graph G0 = {V0, E0}: N0 nodes, M0 edges, adj. matrix A0.

▶ v1, . . . , vT be T sequentially incoming nodes, node vt attaches to graph Gt−1

▶ Vector at = [a1, . . . , aNt−1
]⊤ ∈ RNt−1 represents directed connectivity of vt at time t

▶ The expanded adjacency matrix at time t At ∈ RNt×Nt equals

At =

[
At−1 0
a⊤t 0

]
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Problem Formulation: Stochastic attachment

▶ Node vt attaches to vi ∈ Vt−1 obeying Prob. vector pt ∈ RNt−1 and weights
wt ∈ RNt−1

▶ Time-varying statistics of at: E [at] = pt ◦wt ; Σt = diag(w◦2
t ◦ pt ◦ (1− pt))

▶ Parameter of interest: an order K graph filter h = [h0, . . . , hK ]⊤

▶ Output at new node [ỹt]Nt
:= x̂t = a⊤t

∑K
k=1 hkA

k−1
t−1 x̃t = a⊤t Ax,t−1h
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Online graph filtering

▶ At time t, vt appears

▶ at used in the deterministic setting

▶ Use current filter h(t− 1) to predict x̂t

▶ Known loss incurred w.r.t true signal xt revealed as

lt(h, xt) = ft(h, xt) + r(h)

▶ Update h(t) based on the loss and current estimate h(t− 1).

▶ at revealed in the stochastic setting
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Deterministic online filtering

▶ Loss function lt(h, xt) =
1
2 (a

⊤
t Ax,t−1h− xt)

2 + µ||h||22 with µ > 0.

▶ Update: Projected online gradient descent [13]

h(t) = Π
H
(h(t− 1)− η∇hlt(h, xt)|h(t−1))

where Π
H
(·) denotes projection on H.

▶ Computational complexity of order O(K(Mt +Mmax)), Mmax: maximum edges formed
by vt
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Stochastic online filtering

▶ Predefined pt and wt based on stochastic attachment rule and wt for all t

▶ Loss function lt(h, xt) = E
[
1
2 (a

⊤
t Ax,t−1h− xt)

2
]
+ µ||h||22 with µ > 0.

▶ Computational complexity at time t of order O(K(Mt +Nt))

▶ Potential drawback: Reliance on one type of attachment rule
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Adaptive online filtering

▶ Update pt and wt for all t, i.e., adapt to the incoming node behaviour

▶ Dictionary of attachment rules Pt and weights Wt updated across time

▶ At time t we have p̄t = Pt−1m and w̄t = Wt−1n

▶ Projected online gradient descent but update h(t), m(t), and n(t)

▶ Computational complexity at time t of order O(K(M0 +Nt) +Nt(M))
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Regret

Regret: RT (h
∗) =

∑T
t=1 lt(ht, xt)− lt(h

∗, xt)

Need to bound it!

Deterministic regret
1

T
RT (h

⋆) ≤ ||h⋆||22
2ηT

+
η

2
L2
d

Stochastic regret

1

T
Rs,T (h

⋆) ≤ 1

T

( T∑
t=1

w2
hY

2(||pt||22 +Mmax) + 2RwhY
√
||pt||22+Mmax + w2

hY
2σ̄2

t

+ Ld||hs(t− 1)− hd(t− 1)||
)
+

||h⋆||22
2η

+
η

2
L2
dT

(4)

Stochastic regret depends on choice of attachment rule
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Results

Compare with (1) Batch filter, (2) pre-trained filter, (3) Online kernel-based methods OKL
and OMHKL, (4) Prediction Correction-based Online filtering (PC-OGF)

Synthetic Data Real Data
Method Filter WMean Kernel Movielens100K COVID

NRMSE Sdev NRMSE Sdev NRMSE Sdev NRMSE Sdev NRMSE Sdev
D-OGF (ours) 0.038 0.04 0.02 0.02 0.28 0.05 0.26 0.01 0.21 0.02
S-OGF (ours) 0.26 0.04 0.3 0.06 0.36 0.11 0.28 0.007 0.31 0.02
Ada-OGF (ours) 0.26 0.04 0.33 0.07 0.48 0.21 0.28 0.007 0.26 0.007
PC-OGF (ours) 0.22 0.04 0.26 0.04 0.32 0.06 0.29 0.01 0.26 0.003
Batch 0.05 0.03 0.08 0.04 1.12 0.26 6.7 0.1 0.17 0.03
pre-trained 0.13 0.07 0.10 0.05 0.59 0.36 0.84 0.02 2.5 0.9
OKL 0.24 0.03 0.27 0.05 0.30 0.06 0.27 0.01 0.25 0.02
OMHKL 0.25 0.04 0.4 0.05 0.5 0.2 0.27 0.01 0.25 0.02
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Results

0 200 400 600 800
Incoming Nodes

-2

0

2

4

6

8

10

12
N

or
m

al
iz

ed
 c

um
ul

at
iv

e 
re

gr
et

10-3

S-OGF
Ada-OGF

50 100 150 200 250 300 350
Incoming Nodes

0

0.05

0.1

0.15

N
or

m
al

iz
ed

 c
um

ul
at

iv
e 

re
gr

et

S-OGF
Ada-OGF

100 200 300
Incoming Nodes

0

0.02

0.04

0.06

0.08

0.1

N
or

m
al

iz
ed

 c
um

ul
at

iv
e 

re
gr

et

S-OGF
Ada-OGF

Normalized cumulative regret for stochastic online filtering on synthetic data



34/53

Overview

▶ We proposed online filtering over graphs that grow sequentially over time. More details
in [14]

▶ Extension to growing simplicial complexes in [15]

▶ Provide regret analysis in terms of attachment behaviour of incoming nodes

▶ Numerical results indicate online filters perform collectively better than kernel
methods which do not utilize the data, pre-trained filters, and even a batch filter.
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Online topology identification
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Graph Topology Identification

▶ Graph topology is often unknown or unavailable

▶ Topology identification concerns learning the topology associated with observed data [4]

▶ Typically uses prior information linking the graph with the topology, e.g., Gaussianity [16],
smoothness [17], stationarity [18]
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Contribution

▶ Existing works focus on estimating graphs (static or dynamic) of fixed size [19, 20, 21]

▶ Instead, we focus on cases where the underlying graph grows steadily in size over time

▶ Examples: New companies joining financial networks [22]

▶ Target Learn the growing topology
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Fundamentals of graph learning

▶ X ∈ RN×T : Signals collected over T time instances

▶ G involved via the graph-shift operator S ∈ RN×N (e.g. A, L)

▶ Estimate S from observed signals X ∈ RN×T solving

min
S∈S

L(S, Ĉ) + λ∥S∥1 (5)

▶ Loss L relates S and sample covariance Ĉ = 1
T XX⊤

▶ ℓ1 norm promotes sparsity
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Expanding graphs

▶ In the expanding graph setting new nodes may arrive every time instant t

▶ The size of the graph increases, i.e., |Vt| = Nt ≤ |Vt+1| = Nt + 1
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Expanding graphs

▶ Sequential arrival of nodes results in the following block structure

St+1 =

[
[St+1]Vt

[St+1]Vt,It+1

[St+1]It+1,Vt [St+1]It

]
, xt+1 =

[
[xt+1]Vt

[xt+1]It

]

▶ Where It denoting the indexes of incoming nodes at time t
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Batch Solution

▶ One option is to learn the new topology S∗
t every time a new node and its data appears

▶ We calculate the sample covariance Ĉt and solve

S∗
t = argmin

S∈SNt

L(S, Ĉt) + αd([S]Vt−1
,S∗

t−1) + λ∥S∥1 (6)

▶ Second term accounts for smooth variation between old nodes

▶ Provide high-quality estimates S∗
t

▶ Excessive computational cost, not fit for delay-sensitive applications
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Online Algorithm

▶ Step 1: At time t, xt ∈ RNt is available
▶ Update the covariance matrix as

Ĉt = M1 ◦ Ĉ
(Nt)

t−1 +M2 ◦ xtx
⊤
t (7)

▶ Mask M1 scales importance of past observations, M2 that of the latest

▶ Step 2: Loss function at time t given by

ft(S) = L(S, Ĉt) + αd([S]Vt−1
, Ŝt−1) + ||S||1 (8)

▶ Proximal gradient step: Št = ΠSNt

(
Tηλ

(
Ŝ
(Nt)

t−1 − η∇f(Ŝ
(Nt)

t−1 )
))

▶ Projection on to constraint set of Nt ×Nt shift operators

▶ Step 3: update estimate GSO as Ŝt = hŠt + (1− h)Ŝ
(Nt)

t−1
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The Gaussian case

▶ Assume signals are drawn from Gaussian distribution xt ∼ N (0,S−1
t )

▶ GSO estimated maximizing the regularized log-likelihood [16]

∇ft(S) = Ĉt − (S+ ϵI)
−1

+ α∇d([S]Vt−1
, Ŝt−1)

ΠSNt
(S) = Vmin

{
max {Λ, 0} , σ1/2

}
V⊤

▶ Gradient from log-likelihood and projection to PSD matrices set

▶ Computational complexity of O(N3
t ) with over-the-shelf methods
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Regret

▶ We want to know how accurately the online approach can track the growing topology

▶ Cumulative regret measures error made over a sequence

T∑
t=1

∥Ŝt − S∗
t ∥F (9)

▶ With step size η ≤ ϵ2, dynamic cumulative regret is upper bounded by

T∑
t=1

∥Ŝt − S∗
t ∥F ≤ K1 +K2

T∑
t=2

∥S∗
t − S∗(Nt)

t−1 ∥F (10)

▶ Bounded by how much the optimal topology changes.
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Numerical evaluation

▶ ER graphs growing from 100 to 120 nodes with different frequencies
▶ Low-frequency setting: 20 new nodes arrive simultaneously
▶ High-frequency setting: nodes arrive in 4 groups of 5 nodes

▶ Recovers from disruptions in both settings, insufficient recovery tme =⇒ error
accumulation
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Numerical Evaluation

▶ COVID-19 dataset with incidence rates reported by various U.S. states and territories.
▶ Start with 46 nodes and reports from additional states are available at t = {312, 652}.

▶ Error rapidly increases after t = 350 coinciding with a rise in incident rates.
▶ Our algorithm adapts to the new topology and the error decreases.
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Overview

▶ An online graph learning method tailored to expanding graphs

▶ Define efficient node-dependent covariance updates

▶ Propose an algorithm based on PPG descent to learn from streaming data

▶ Bounded dynamic regret
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Challenges and further possibilities

Overview
▶ A SP-based principled framework for expanding graphs
▶ Stochastic model-based attachments for unknown connectivity
▶ Online approaches for SP and Topology identification with some theoretical analysis
▶ Relatively well compared to known topology

Challenges and further possibilities
▶ Modeling data on expanding graphs a challenge
▶ More refined stochastic attachment models
▶ Potential for using physics-driven models involving the spectrum
▶ Extension to expanding higher order networks possible
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END
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