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Matching

Graph Topology Identification

Understanding Hidden Relationships

In many fields, relationships among entities are not directly observable. Graph topology identification helps to
infer these hidden structures from nodal data.

Brain Connectivity Network Social Interaction Network
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Graph Topology Identification (GTI)

@ GTI relies on the fact that the nodal data is related to the graph.

@ Specifically, it follows a distribution determined by the graph
x ~ F(8S).
@ This could be the Gaussian distribution:
F(S) = N(u(8S), X(8)).
@ Here, both u(S) and X(S) are functions of the graph structure S.

v

Approaches

@ Smoothness of data over graph

@ Graphical Lasso

@ Spectral template

@ Structural equation model (SEM)
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Structural Equation Model (SEM)

@ We consider graph signals x following the model:

x=Sx+e, XxX= (I—S)_le.
@ We assume that S represents the adjacency matrix of an undirected graph with N nodes, implying
S=S8T, diag(S)=0.
@ We further assume the exogenous variables satisfy
e~ N(0,I).
@ This overall leads to the following distribution for x:
X ~ N(o, - S)—2).

@ Observing T realizations, we collect them into the data matrix

X =[x[,....XT].

FUDelft Graph Topology Identification Based on Covariance Matching April 10, 2025



Linear Regression

Optimization Problem

o SigMatch seeks S by minimizing:

min ||X - SXII% subjectto S =87, diag(S) = 0.
S

@ Not the maximum likelihood estimator!
@ Only good approach for:

o A directed acyclic graph (DAG)
o Deterministic known exogenous variables
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Analysis of SigMatch
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We can prove that, for any underlying graph shift matrix S, the linear regression method fails to converge to the
correct graph even for T — oo.
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Covariance Matching

Covariance Matching Framework

@ Goal: Estimate S so that the theoretical covariance

Le=(1-9)7
is close to the sample covariance
Cx = XX
X — T .
@ Why? Close to the true maximum likelihood.

@ Optimization problem:

S* = argmin ||Cx - (I—§)_2||F subjectto  §=8T, diag(S) =0.
S
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Solution Approach

Spectral Template Idea

@ Take the EVD

Cx = Uy diag(2x) Uy,
and model
(I-8)"' =0 diag(A) 0T
which means
(1-9)"2 =0 diag(AH 0T
o Key Idea:

o Rather than solving directly for S, we estimate U and A.
o By choosing U = Uy, this task reduces to fitting ;12 to Ax.
o The constraint to guarantee is diag((I - S)) = diag(f] diag(;l_l) fJT) =1
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Optimization Formulation

Swapping the objective and the constraint

@ The resulting optimization problem becomes:
A" = argmin 1A% - A3 subjectto diag(Ux diag(1™") Uj)=1.
A

@ Alternatively, we can swap the objective and constraint

o We enforce /Alz = Ax as a constraint.
o We fit diag(Ux diag(;l_l) Uj) as close as possible to 1.

@ This results in the following problem

A" =argmin || diag(deiag(;l_l)U;r) - 1||% subjectto A~ = Ax.
A
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Addressing Sign Ambiguity and Final Optimization

Sign Ambiguity

@ Note that ;12 = Ay, introduces a sign ambiguity for A.

. . ~ .oA2 .
@ Denoting the sign vector as § € {—1, 1}?V, the constraint A° = Ay can be rewritten as

A = diag(q) Y%

@ The objective function can then be written as

I diag(Uy diag(@)diag(A5 /H)UT) - 113 = |(Ux 0 Uy) diag(y'/*)d - 13

Final Problem

@ Putting this all together and defining W = (Ux © Uyx) diag(d, 1 2), the final problem becomes a binary

quadratic programming problem

. ~ 2
a =ag min [Wa-1l.
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Results and Observations
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Key Observations

@ SpecTemp does not exploit SEM structure and has problems with rank loss
@ SigMatch never converges, but shows better performance with fewer samples.

@ CovMatch maintains robust performance across both simple and hard scenarios.
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Polynomial Model

Motivation and Model

@ The SEM model can be seen as a special case of a more general polynomial model with

h(S)=d-85)"L

@ We consider graph signals:

L-1
x = h(S)e,  h(S) = Zhgsf.
=0

@ We again assume S = ST, diag(S) = 0, and e ~ N (0,1).

@ Then the covariance of X is

x ~ N(0, h%(S)).
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Covariance Matching for Polynomial Models

Key Steps

@ We wish to match

Cx ~ K (S).
o Assuming now that § = U diag(2) U7, we have
h(S) = U diag(h(2)) 0.
@ Setting U = Uy (from the EVD of Cy) as before, we need to match hz(;l) to Ax (from the EVD of Cy).
@ This matching is turned into a constraint, leading to a set of polynomial equations
) = Aix, i=1,...,N.

@ The constraint diag(S) = 0 is on the other hand turned into the objective

Il diag(Uyx diag() UD)|l = [|(Ux @ Us) A3.
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Optimization Formulation

Final Form

@ Let A; x be the i-th eigenvalue of Cy.

@ Then each scalar constraint h2(;) = Ai x has a (finite) set of roots {c"}, R c"ll.’ .

@ All this put together leads to the following problem

min ||(UX o Uy) 2”% subjectto A; € {5}, A c"f’i}.
A

@ This is a discrete optimization problem.
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SEM with Colored Exogenous Variables

@ So far, we assumed e ~ N (0, I).

@ In many settings, e can be Gaussian with a known, non-identity covariance:
e ~ N0, Z¢), Ze#L
Since the SEM is given by x = (I — 8) ! e, this leads to
T =B{xx"}=(1I-8)"'Z.1-5)"T.
Defining H = (I - S)~!, then results in the following matching problem
HI A" » Cy.
Key Idea: Instead of matching a Ye H ~ Cx, we match

(AZe)? ~ CxZe.
Results in a structure where an unknown square has to be matched to something we know

This now involves the EVD of Cyx Xe.
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Covariance Matching for Colored Exogenous Variables

@ As discussed we need to match (H Ee)z ~ CxZe.
@ For the right hand side we obtain the EVD
Cx Ze = Uye diag(dye) Uxe -

@ For the left hand side, we use the model

Az, = Udiag(}) 07!, (AZ)? = U diag(A°) 0.
@ We set U = Uy, and define a sign vector § € {1, 1}¥ satisfying A= dlag(q)/ll/z.

@ The hollow constraint on S again leads to a binary quadratic programming problem:

m1n|| ((Ze Uxe) © Uy, ) diag (A 1/2 1||2
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a Covariance Matching Polynomial Model
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@ Positive and negative edge weights

@ For SEM, colored exogenous variables

o Sparse: 20 nodes and 20 edges with rank loss
o Fully connected: 20 nodes with all edges; no particular attention to rank

@ For polynomial model, white exogenous variables and filter order 3
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Conclusions and Future Work

We introduced a covariance matching approach for a SEM on undirected graphs in white noise.

Key advantages:

o Close to maximum likelihood estimation.
o No scale ambiguities and convergence issues.

We extended the approach to polynomial models and a colored exogenous variables.

@ Incorporating sparsity priors or advanced regularizers for large-scale graphs.

Exploring this method for directed acyclic graphs

Exploring dynamic or time-varying topologies with evolving network structures.
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Thank you for your attention!
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