SEM intro	Signal Matching	Covariance Matching	Polynomial Model	Colored Distribution
000	OO	00000	000	

Graph Topology Identification Based on Covariance Matching

Yongsheng Han, Alberto Natali, Geert Leus

SEM intro		
000		

Graph Topology Identification

Understanding Hidden Relationships

In many fields, relationships among entities are not directly observable. Graph topology identification helps to infer these hidden structures from nodal data.

TUDelft

_		 		
SEM intro				

Graph Topology Identification (GTT)

General Process

- GTI relies on the fact that the nodal data is related to the graph.
- Specifically, it follows a distribution determined by the graph

 $\mathbf{x} \sim \mathscr{F}(\mathbf{S}).$

• This could be the Gaussian distribution:

 $\mathscr{F}(\mathbf{S}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{S}), \boldsymbol{\Sigma}(\mathbf{S})).$

• Here, both $\mu(S)$ and $\Sigma(S)$ are functions of the graph structure S.

Approaches

- Smoothness of data over graph
- Graphical Lasso
- Spectral template
- Structural equation model (SEM)

SEM intro	Signal Matching OO	Covariance Matching	Polynomial Model	Colored Distribution
Structural	Equation Model	(SEM)		

Setup

• We consider graph signals **x** following the model:

$$\mathbf{x} = \mathbf{S}\mathbf{x} + \mathbf{e}, \quad \mathbf{x} = (\mathbf{I} - \mathbf{S})^{-1}\mathbf{e}.$$

• We assume that **S** represents the *adjacency matrix* of an *undirected* graph with N nodes, implying

$$\mathbf{S} = \mathbf{S}^{\top}, \quad \text{diag}(\mathbf{S}) = \mathbf{0}.$$

• We further assume the exogenous variables satisfy

 $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$

• This overall leads to the following distribution for **x**:

$$\mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \ (\mathbf{I}-\mathbf{S})^{-2}\right)$$

• Observing *T* realizations, we collect them into the data matrix

$$\mathbf{X} = [\mathbf{x}_1, \ldots, \mathbf{x}_T].$$

	Signal Matching		
Linear R	egression		

Optimization Problem

• **SigMatch** seeks \hat{S} by minimizing:

$$\min_{\hat{\mathbf{S}}} \|\mathbf{X} - \hat{\mathbf{S}} \mathbf{X}\|_F^2 \quad \text{subject to} \quad \hat{\mathbf{S}} = \hat{\mathbf{S}}^\top, \text{ diag}(\hat{\mathbf{S}}) = \mathbf{0}.$$

- Not the maximum likelihood estimator!
- Only good approach for:
 - A directed acyclic graph (DAG)
 - Deterministic known exogenous variables

SEM intro 000	Signal Matching	Covariance Matching	Polynomial Model 000	Colored Distribution
Analysis of	SigMatch			

Convergence Issue

We can prove that, for *any* underlying graph shift matrix **S**, the linear regression method **fails** to converge to the correct graph even for $T \to \infty$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日

SEM intro 000	Signal Matching	Covariance Matching	Polynomial Model	Colored Distribution
Covariance I	Matching			

Covariance Matching Framework

• Goal: Estimate S so that the theoretical covariance

$$\Sigma_x = (\mathbf{I} - \mathbf{S})^{-2}$$

is close to the *sample* covariance

$$\mathbf{C}_{\mathbf{X}} = \frac{1}{T} \mathbf{X} \mathbf{X}^{\top}.$$

- Why? Close to the true maximum likelihood.
- Optimization problem:

$$\mathbf{S}^* = \arg\min_{\hat{\mathbf{S}}} \left\| \mathbf{C}_{\mathbf{X}} - (\mathbf{I} - \hat{\mathbf{S}})^{-2} \right\|_F$$
 subject to $\hat{\mathbf{S}} = \hat{\mathbf{S}}^\top$, diag $(\hat{\mathbf{S}}) = \mathbf{0}$

SEM intro 000	Signal Matching	Covariance Matching	Polynomial Model	Colored Distribution
Solution	Approach			

Spectral Template Idea

• Take the EVD

$$\mathbf{C}_{\mathbf{X}} = \mathbf{U}_{\mathbf{X}} \operatorname{diag}(\lambda_{\mathbf{X}}) \mathbf{U}_{\mathbf{X}}^{\top},$$

and model

$$(\mathbf{I} - \hat{\mathbf{S}})^{-1} = \hat{\mathbf{U}} \operatorname{diag}(\hat{\lambda}) \hat{\mathbf{U}}^{\top}$$

which means

$$(\mathbf{I} - \hat{\mathbf{S}})^{-2} = \hat{\mathbf{U}} \operatorname{diag}(\hat{\boldsymbol{\lambda}}^2) \hat{\mathbf{U}}^{\mathsf{T}}$$

• Key Idea:

- Rather than solving directly for $\hat{\mathbf{S}}$, we *estimate* $\hat{\mathbf{U}}$ and $\hat{\boldsymbol{\lambda}}$.
- By choosing $\hat{\mathbf{U}} = \mathbf{U}_{\mathbf{x}}$, this task reduces to fitting $\hat{\lambda}^2$ to $\lambda_{\mathbf{x}}$.
- The constraint to guarantee is diag $((\mathbf{I} \hat{\mathbf{S}})) = \text{diag}(\hat{\mathbf{U}} \text{ diag}(\hat{\lambda}^{-1}) \hat{\mathbf{U}}^{\top}) = \mathbf{1}.$

SEM intro 000	Signal Matching OO	Covariance Matching	Polynomial Model	Colored Distribution

Optimization Formulation

Swapping the objective and the constraint

• The resulting optimization problem becomes:

$$\lambda^* = \arg\min_{\hat{\lambda}} \|\hat{\lambda}^2 - \lambda_{\mathbf{x}}\|_2^2 \quad \text{subject to} \quad \operatorname{diag}(\mathbf{U}_{\mathbf{x}} \operatorname{diag}(\hat{\lambda}^{-1}) \mathbf{U}_{\mathbf{x}}^{\top}) = \mathbf{1}.$$

• Alternatively, we can swap the objective and constraint

- We enforce λ² = λ_x as a constraint.
 We fit diag(U_x diag(λ⁻¹) U_x^T) as close as possible to 1.
- This results in the following problem

$$\lambda^* = \arg\min_{\hat{\lambda}} \quad \|\operatorname{diag}(\mathbf{U}_{\mathbf{x}}\operatorname{diag}(\hat{\lambda}^{-1})\mathbf{U}_{\mathbf{x}}^{\top}) - \mathbf{1}\|_2^2 \quad \text{subject to} \quad \hat{\lambda}^2 = \lambda_{\mathbf{x}}.$$

Addressing Sign Ambiguity and Final Optimization

Sign Ambiguity

- Note that $\hat{\lambda}^2 = \lambda_{\mathbf{x}}$, introduces a sign ambiguity for $\hat{\lambda}$.
- Denoting the sign vector as $\hat{\mathbf{q}} \in \{-1, 1\}^N$, the constraint $\hat{\lambda}^2 = \lambda_{\mathbf{x}}$ can be rewritten as

$$\hat{\lambda} = \operatorname{diag}(\hat{\mathbf{q}}) \lambda_{\mathbf{x}}^{1/2}.$$

• The objective function can then be written as

$$\|\operatorname{diag}(\mathbf{U}_{\mathbf{x}}\operatorname{diag}(\hat{\mathbf{q}})\operatorname{diag}(\lambda_{\mathbf{x}}^{-1/2})\mathbf{U}_{\mathbf{x}}^{\top}) - \mathbf{1}\|_{2}^{2} = \|\left(\mathbf{U}_{\mathbf{x}}\odot\mathbf{U}_{\mathbf{x}}\right)\operatorname{diag}(\lambda_{\mathbf{x}}^{-1/2})\hat{\mathbf{q}} - \mathbf{1}\|_{2}^{2}$$

Final Problem

• Putting this all together and defining $W = (U_x \odot U_x) \operatorname{diag}(\lambda_x^{-1/2})$, the final problem becomes a binary quadratic programming problem

$$\mathbf{q}^* = \arg \min_{\hat{\mathbf{q}} \in \{-1,1\}^N} \|\mathbf{W}\hat{\mathbf{q}} - \mathbf{1}\|_2^2.$$

000	00	00000	000	00000
D 1	1.01			

Results and Observations

Settings

- Graph with 20 nodes and 20 edges
- 100 graph realizations
- Simple: $\mathbf{U} \odot \mathbf{U}$ high rank
- Hard: $U \odot U$ low rank

Key Observations

- SpecTemp does not exploit SEM structure and has problems with rank loss
- SigMatch never converges, but shows better performance with fewer samples.
- CovMatch maintains robust performance across both simple and hard scenarios.

SEM intro 000	Signal Matching	Covariance Matching	Polynomial Model	Colored Distribution
Polynomia	al Model			

Motivation and Model

• The SEM model can be seen as a special case of a more general *polynomial model* with

$$h(\mathbf{S}) = (\mathbf{I} - \mathbf{S})^{-1}.$$

• We consider graph signals:

$$\mathbf{x} = h(\mathbf{S}) \mathbf{e}, \qquad h(\mathbf{S}) = \sum_{\ell=0}^{L-1} h_{\ell} \mathbf{S}^{\ell}.$$

- We again assume $\mathbf{S} = \mathbf{S}^{\top}$, diag(\mathbf{S}) = 0, and $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- Then the covariance of **x** is

$$\mathbf{x} \sim \mathcal{N}(\mathbf{0}, h^2(\mathbf{S})).$$

• • • • • • • • • • • • •

SEM introSignal MatchingCovariance MatchingPolynomial ModelColored Distribution00000000000000000000

Covariance Matching for Polynomial Models

Key Steps

• We wish to match

$$\mathbf{C}_{\mathbf{x}} \approx h^2(\hat{\mathbf{S}}).$$

• Assuming now that $\hat{\mathbf{S}} = \hat{\mathbf{U}} \operatorname{diag}(\hat{\lambda}) \hat{\mathbf{U}}^{\top}$, we have

$$h(\hat{\mathbf{S}}) = \hat{\mathbf{U}} \operatorname{diag}(h(\hat{\lambda})) \hat{\mathbf{U}}^{\top}$$

- Setting $\hat{\mathbf{U}} = \mathbf{U}_{\mathbf{X}}$ (from the EVD of $\mathbf{C}_{\mathbf{X}}$) as before, we need to match $h^2(\hat{\lambda})$ to $\lambda_{\mathbf{X}}$ (from the EVD of $\mathbf{C}_{\mathbf{X}}$).
- This matching is turned into a constraint, leading to a set of polynomial equations

$$h^2(\hat{\lambda}_i) = \lambda_{i,\mathbf{x}}, \quad i = 1, \dots, N.$$

• The constraint $\text{diag}(\hat{S}) = 0$ is on the other hand turned into the objective

$$\|\operatorname{diag}(\mathbf{U}_{\mathbf{x}} \operatorname{diag}(\hat{\lambda}) \mathbf{U}_{\mathbf{x}}^{\top})\| = \|(\mathbf{U}_{\mathbf{x}} \odot \mathbf{U}_{\mathbf{x}}) \hat{\lambda}\|_{2}^{2}.$$

	Polynomial Model	

Optimization Formulation

Final Form

- Let $\lambda_{i,\mathbf{x}}$ be the *i*-th eigenvalue of $\mathbf{C}_{\mathbf{x}}$.
- Then each scalar constraint $h^2(\hat{\lambda}_i) = \lambda_{i,\mathbf{x}}$ has a (finite) set of roots $\{\tilde{c}_i^1, \ldots, \tilde{c}_i^{p_i}\}$.
- All this put together leads to the following problem

$$\min_{\hat{\lambda}} \| (\mathbf{U}_{\mathbf{X}} \odot \mathbf{U}_{\mathbf{X}}) \, \hat{\lambda} \|_{2}^{2} \quad \text{subject to} \quad \hat{\lambda}_{i} \in \{ \tilde{c}_{i}^{1}, \dots, \tilde{c}_{i}^{p_{i}} \}.$$

• This is a discrete optimization problem.

SEM intro 000	Signal Matching	Covariance Matching	Polynomial Model	Colored Distribution
SEM with C	Colored Exoger	nous Variables		

Setup

- So far, we assumed $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- In many settings, **e** can be Gaussian with a *known*, *non*-identity covariance:

 $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \Sigma_{\mathbf{e}}), \quad \Sigma_{\mathbf{e}} \neq \mathbf{I}.$

• Since the SEM is given by $\mathbf{x} = (\mathbf{I} - \mathbf{S})^{-1} \mathbf{e}$, this leads to

$$\boldsymbol{\Sigma}_{\boldsymbol{X}} = \mathbb{E}\{\boldsymbol{x}\boldsymbol{x}^{\top}\} = (\boldsymbol{I} - \boldsymbol{S})^{-1} \boldsymbol{\Sigma}_{\boldsymbol{e}} (\boldsymbol{I} - \boldsymbol{S})^{-\top}.$$

• Defining $\mathbf{H} = (\mathbf{I} - \mathbf{S})^{-1}$, then results in the following matching problem

 $\hat{H} \Sigma_e \, \hat{H}^\top \approx C_x.$

• Key Idea: Instead of matching $\hat{H}\,\Sigma_e\,\hat{H}^{\top}\approx C_x,$ we match

$$(\hat{\mathbf{H}} \boldsymbol{\Sigma}_{\mathbf{e}})^2 \approx \mathbf{C}_{\mathbf{x}} \boldsymbol{\Sigma}_{\mathbf{e}}.$$

- Results in a structure where an unknown square has to be matched to something we know
- This now involves the EVD of $C_{x} \Sigma_{e}$.

Covariance Matching for Colored Exogenous Variables

Final Optimization

- As discussed we need to match $(\hat{H} \Sigma_e)^2 \approx C_x \Sigma_e$.
- For the right hand side we obtain the EVD

$$\mathbf{C}_{\mathbf{x}} \, \boldsymbol{\Sigma}_{\mathbf{e}} = \mathbf{U}_{\mathbf{x}\mathbf{e}} \, \operatorname{diag}(\boldsymbol{\lambda}_{\mathbf{x}\mathbf{e}}) \, \mathbf{U}_{\mathbf{x}\mathbf{e}}^{-1}.$$

• For the left hand side, we use the model

$$\hat{\mathbf{H}} \Sigma_{\mathbf{e}} = \hat{\mathbf{U}} \operatorname{diag}(\hat{\lambda}) \hat{\mathbf{U}}^{-1}, \quad (\hat{\mathbf{H}} \Sigma_{\mathbf{e}})^2 = \hat{\mathbf{U}} \operatorname{diag}(\hat{\lambda}^2) \hat{\mathbf{U}}^{-1}.$$

- We set $\hat{\mathbf{U}} = \mathbf{U}_{\mathbf{xe}}$ and define a sign vector $\hat{\mathbf{q}} \in \{-1, 1\}^N$ satisfying $\hat{\lambda} = \operatorname{diag}(\hat{\mathbf{q}})\lambda_{\mathbf{xe}}^{1/2}$.
- $\bullet\,$ The hollow constraint on \hat{S} again leads to a binary quadratic programming problem:

$$\min_{\hat{\mathbf{q}}} \big\| \big((\boldsymbol{\Sigma}_{e} \ \mathbf{U}_{xe}) \odot \mathbf{U}_{xe}^{-\top} \big) \operatorname{diag}(\boldsymbol{\lambda}_{xe}^{-1/2}) \ \hat{\mathbf{q}} \ - \ \mathbf{1} \big\|_{2}^{2}.$$

		Colored Distribution
Experiments		

Settings

- Positive and negative edge weights
- For SEM, colored exogenous variables
 - Sparse: 20 nodes and 20 edges with rank loss
 - Fully connected: 20 nodes with all edges; no particular attention to rank
- For polynomial model, white exogenous variables and filter order 3

SEM intro 000	Signal Matching OO	Covariance Matching	Polynomial Model	Colored Distribution
Conclusio	ons and Future W	ork		

Conclusions

• We introduced a covariance matching approach for a SEM on undirected graphs in white noise.

• Key advantages:

- Close to maximum likelihood estimation.
- No scale ambiguities and convergence issues.
- We extended the approach to **polynomial models** and a **colored** exogenous variables.

Future Work

- Incorporating **sparsity priors** or advanced regularizers for large-scale graphs.
- Exploring this method for directed acyclic graphs
- Exploring dynamic or time-varying topologies with evolving network structures.

		Colored Distribution
		00000

Thank you for your attention!

> < E > <