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Graph Topology Identification

Understanding Hidden Relationships
In many fields, relationships among entities are not directly observable. Graph topology identification helps to
infer these hidden structures from nodal data.

Brain Connectivity Network Social Interaction Network
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Graph Topology Identification (GTI)

General Process
GTI relies on the fact that the nodal data is related to the graph.
Specifically, it follows a distribution determined by the graph

x ∼ ℱ(S).
This could be the Gaussian distribution:

ℱ(S) = N(𝝁(S),𝚺(S)).
Here, both 𝝁(S) and 𝚺(S) are functions of the graph structure S.

Approaches
Smoothness of data over graph
Graphical Lasso
Spectral template
Structural equation model (SEM)
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Structural Equation Model (SEM)

Setup
We consider graph signals x following the model:

x = Sx + e, x = (I − S)−1e.
We assume that S represents the adjacency matrix of an undirected graph with 𝑁 nodes, implying

S = S⊤, diag(S) = 0.
We further assume the exogenous variables satisfy

e ∼ N(0, I).
This overall leads to the following distribution for x:

x ∼ N
(
0, (I − S)−2

)
.

Observing 𝑇 realizations, we collect them into the data matrix

X = [x1, . . . , x𝑇 ] .
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Linear Regression

Optimization Problem

SigMatch seeks Ŝ by minimizing:

min
Ŝ

∥X − Ŝ X∥2
𝐹 subject to Ŝ = Ŝ⊤, diag(Ŝ) = 0.

Not the maximum likelihood estimator!
Only good approach for:

A directed acyclic graph (DAG)
Deterministic known exogenous variables
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Analysis of SigMatch

Convergence Issue
We can prove that, for any underlying graph shift matrix S, the linear regression method fails to converge to the
correct graph even for 𝑇 → ∞.
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Covariance Matching

Covariance Matching Framework
Goal: Estimate S so that the theoretical covariance

𝚺𝑥 = (I − S)−2

is close to the sample covariance

Cx =
1
𝑇

X X⊤.

Why? Close to the true maximum likelihood.
Optimization problem:

S∗ = arg min
Ŝ



Cx − (I − Ŝ)−2


𝐹 subject to Ŝ = Ŝ⊤, diag(Ŝ) = 0.
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Solution Approach

Spectral Template Idea
Take the EVD

Cx = Ux diag(𝝀x) U⊤
x ,

and model

(I − Ŝ)−1 = Û diag(𝝀̂) Û⊤

which means

(I − Ŝ)−2 = Û diag(𝝀̂2) Û⊤

Key Idea:
Rather than solving directly for Ŝ, we estimate Û and 𝝀̂.
By choosing Û = Ux, this task reduces to fitting 𝝀̂

2 to 𝝀x.
The constraint to guarantee is diag((I − Ŝ)) = diag

(
Û diag(𝝀̂−1) Û⊤) = 1.
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Optimization Formulation

Swapping the objective and the constraint
The resulting optimization problem becomes:

𝝀∗ = arg min
𝝀̂

∥𝝀̂2 − 𝝀x∥2
2 subject to diag(Ux diag(𝝀̂−1) U⊤

x ) = 1.

Alternatively, we can swap the objective and constraint

We enforce 𝝀̂
2
= 𝝀x as a constraint.

We fit diag(Ux diag(𝝀̂−1) U⊤
x ) as close as possible to 1.

This results in the following problem

𝝀∗ = arg min
𝝀̂

∥ diag(Uxdiag(𝝀̂−1)U⊤
x ) − 1∥2

2 subject to 𝝀̂
2
= 𝝀x.
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Addressing Sign Ambiguity and Final Optimization

Sign Ambiguity

Note that 𝝀̂2
= 𝝀x, introduces a sign ambiguity for 𝝀̂.

Denoting the sign vector as q̂ ∈ {−1, 1}𝑁 , the constraint 𝝀̂2
= 𝝀x can be rewritten as

𝝀̂ = diag(q̂) 𝝀1/2
x .

The objective function can then be written as

∥ diag(Ux diag(q̂)diag(𝝀−1/2
x )U⊤

x ) − 1∥2
2 = ∥

(
Ux ⊙ Ux

)
diag

(
𝝀
−1/2
x

)
q̂ − 1∥2

2

Final Problem

Putting this all together and defining W =
(
Ux ⊙ Ux

)
diag

(
𝝀
−1/2
x

)
, the final problem becomes a binary

quadratic programming problem

q∗ = arg min
q̂∈{−1,1}𝑁



W q̂ − 1


2
2.
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Results and Observations

Settings
Graph with 20 nodes and 20 edges
100 graph realizations
Simple: U ⊙ U high rank
Hard: U ⊙ U low rank

Key Observations
SpecTemp does not exploit SEM structure and has problems with rank loss
SigMatch never converges, but shows better performance with fewer samples.
CovMatch maintains robust performance across both simple and hard scenarios.
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Polynomial Model

Motivation and Model
The SEM model can be seen as a special case of a more general polynomial model with

ℎ(S) = (I − S)−1.

We consider graph signals:

x = ℎ(S) e, ℎ(S) =
𝐿−1∑
ℓ=0

ℎℓ Sℓ .

We again assume S = S⊤, diag(S) = 0, and e ∼ N(0, I).
Then the covariance of x is

x ∼ N
(
0, ℎ2 (S)

)
.
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Covariance Matching for Polynomial Models

Key Steps
We wish to match

Cx ≈ ℎ2 (Ŝ) .
Assuming now that Ŝ = Û diag

(
𝝀̂
)
Û⊤, we have

ℎ
(
Ŝ
)
= Û diag

(
ℎ(𝝀̂)

)
Û⊤.

Setting Û = Ux (from the EVD of Cx) as before, we need to match ℎ2 (𝝀̂) to 𝝀x (from the EVD of Cx).
This matching is turned into a constraint, leading to a set of polynomial equations

ℎ2 (𝜆̂𝑖) = 𝜆𝑖,x, 𝑖 = 1, . . . , 𝑁.

The constraint diag(Ŝ) = 0 is on the other hand turned into the objective

∥ diag(Ux diag(𝝀̂) U⊤
x )∥ =



(Ux ⊙ Ux
)
𝝀̂


2
2.
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Optimization Formulation

Final Form
Let 𝜆𝑖,x be the 𝑖-th eigenvalue of Cx.
Then each scalar constraint ℎ2 (𝜆̂𝑖) = 𝜆𝑖,x has a (finite) set of roots {𝑐1

𝑖 , . . . , 𝑐
𝑝𝑖
𝑖 }.

All this put together leads to the following problem

min
𝝀̂



(Ux ⊙ Ux
)
𝝀̂


2
2 subject to 𝜆̂𝑖 ∈ {𝑐1

𝑖 , . . . , 𝑐
𝑝𝑖
𝑖 }.

This is a discrete optimization problem.
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SEM with Colored Exogenous Variables

Setup
So far, we assumed e ∼ N(0, I).
In many settings, e can be Gaussian with a known, non-identity covariance:

e ∼ N
(
0, 𝚺e

)
, 𝚺e ≠ I.

Since the SEM is given by x = (I − S)−1 e, this leads to

𝚺x = E{xx⊤} = (I − S)−1 𝚺e (I − S)−⊤.
Defining H = (I − S)−1, then results in the following matching problem

Ĥ𝚺e Ĥ⊤ ≈ Cx.

Key Idea: Instead of matching Ĥ𝚺e Ĥ⊤ ≈ Cx, we match(
Ĥ𝚺e

)2 ≈ Cx 𝚺e.

Results in a structure where an unknown square has to be matched to something we know
This now involves the EVD of Cx 𝚺e.
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Covariance Matching for Colored Exogenous Variables

Final Optimization

As discussed we need to match
(
Ĥ𝚺e

)2 ≈ Cx 𝚺e.

For the right hand side we obtain the EVD

Cx 𝚺e = Uxe diag
(
𝝀xe

)
U−1

xe .

For the left hand side, we use the model

Ĥ𝚺e = Û diag
(
𝝀̂
)
Û−1,

(
Ĥ𝚺e

)2 = Û diag
(
𝝀̂

2) Û−1.

We set Û = Uxe and define a sign vector q̂ ∈ {−1, 1}𝑁 satisfying 𝝀̂ = diag(q̂)𝝀1/2
xe .

The hollow constraint on Ŝ again leads to a binary quadratic programming problem:

min
q̂



( (𝚺e Uxe
)
⊙ U−⊤

xe
)
diag

(
𝝀
−1/2
xe

)
q̂ − 1



2
2.
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Experiments

SEM sparse graph SEM fully connected graph Polynomial model sparse graph

Settings
Positive and negative edge weights
For SEM, colored exogenous variables

Sparse: 20 nodes and 20 edges with rank loss
Fully connected: 20 nodes with all edges; no particular attention to rank

For polynomial model, white exogenous variables and filter order 3
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Conclusions and Future Work

Conclusions
We introduced a covariance matching approach for a SEM on undirected graphs in white noise.
Key advantages:

Close to maximum likelihood estimation.
No scale ambiguities and convergence issues.

We extended the approach to polynomial models and a colored exogenous variables.

Future Work
Incorporating sparsity priors or advanced regularizers for large-scale graphs.
Exploring this method for directed acyclic graphs
Exploring dynamic or time-varying topologies with evolving network structures.
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Thank you for your attention!
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