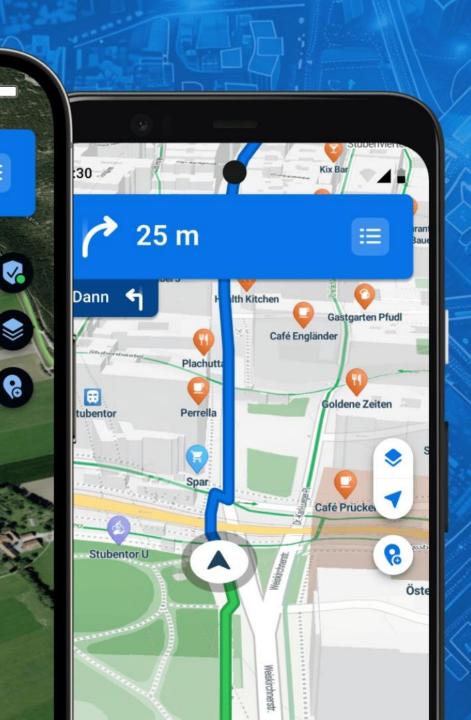
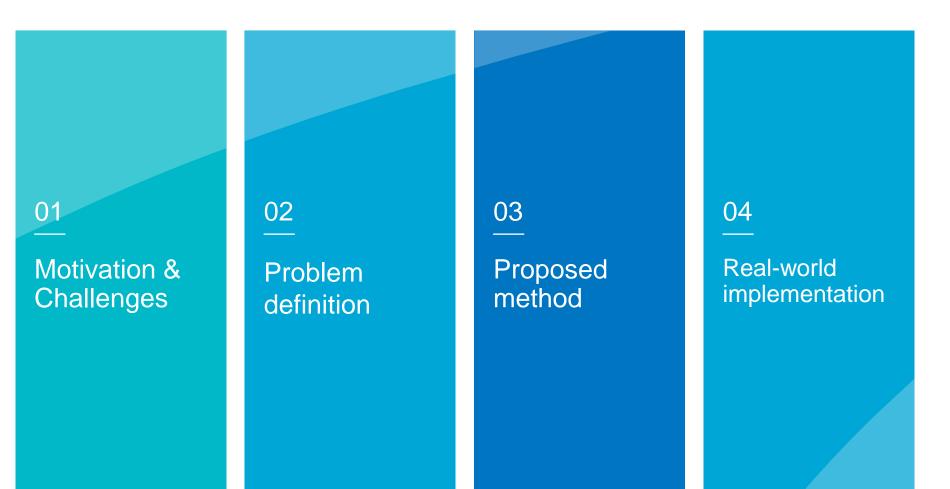


Bicycle Travel Time Estimation via Dual Graph-Based Neural Networks

Ting Gao | Graph&Data@TU Delft Supervisors: Elvin Isufi, Winnie Daamen, Serge Hoogendoorn 6/19/2025





Motivation & Challenges

Motivation

Bicycles

Sustainable transport mode

Widespread popularity in the Netherlands

Travel time estimation

Cyclists' route planning

Insights for infrastructure upgrades

Insights for traffic control

Research contribution

Early stage of bicycle travel time estimation

Motivation | Challenges

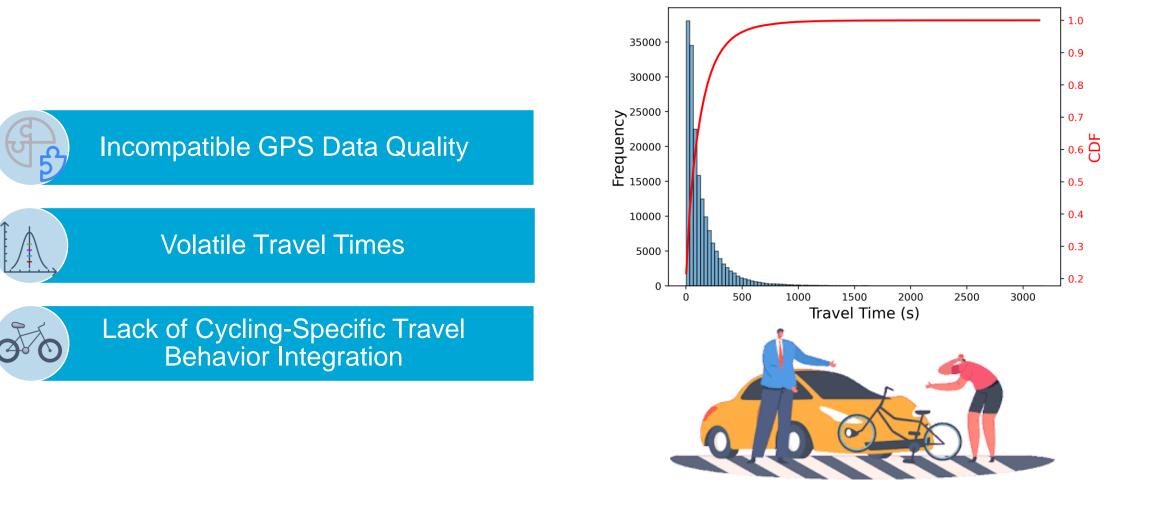
Limited availability of structural cycling data.

ដ

The diverse and complex behaviors of cyclists.

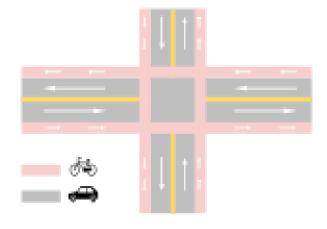
The lack of strict road constraints for cycling and frequent rule violations.

Why not just apply car-traffic methods?



Problem definition

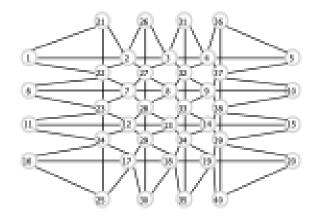
Road line network



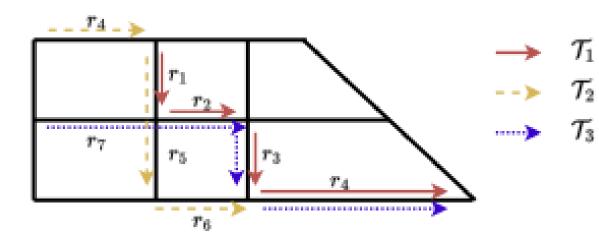
Intersection

21. 31 **96**.) 28. 11 2 3 4 [22]23 **3**2.1 02 EG. ¢ 21 22 2.0 33. 28 12 14 15.1 12 18 19 15 20 25

OpenStreetMap linestring representation



Problem formulation



Example of travel time estimation

When y^i is missing, $q_i = (P^i, V^i, R^i, t^i)$

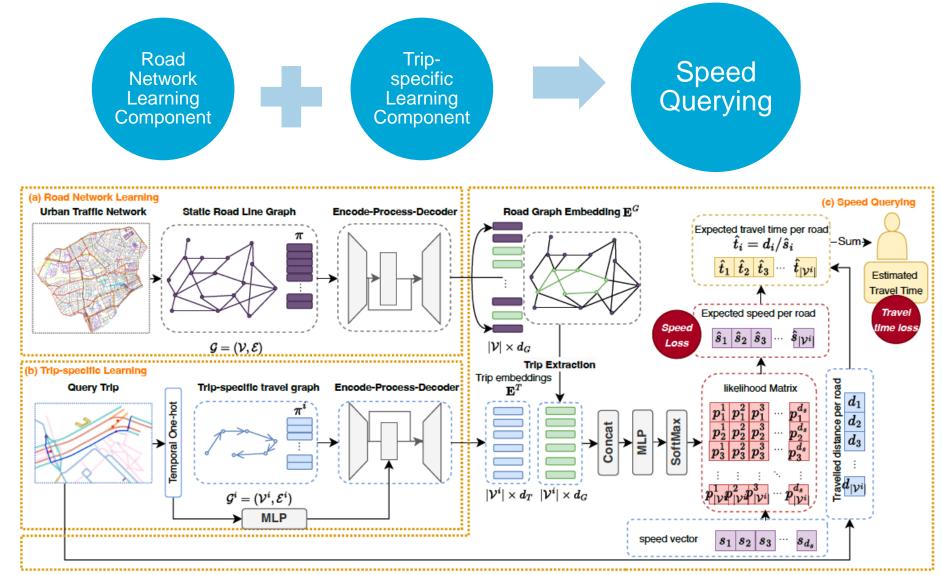
 \mathcal{D} set of trips with complete attributes

G Road network

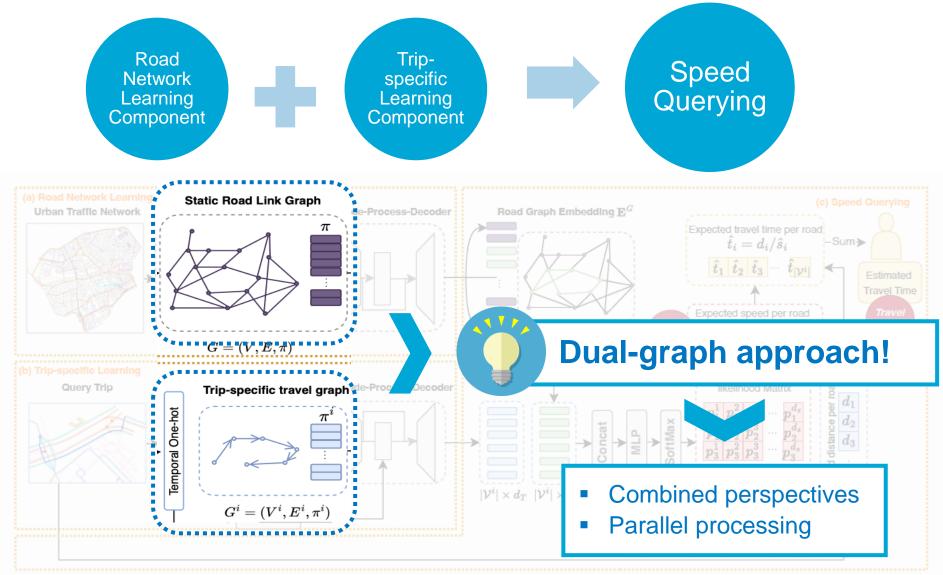
 $f(q_i | \mathcal{D}, \mathcal{G}) \longrightarrow y^i$

Dual Graph-based neural networks for Bicycle travel time estimation

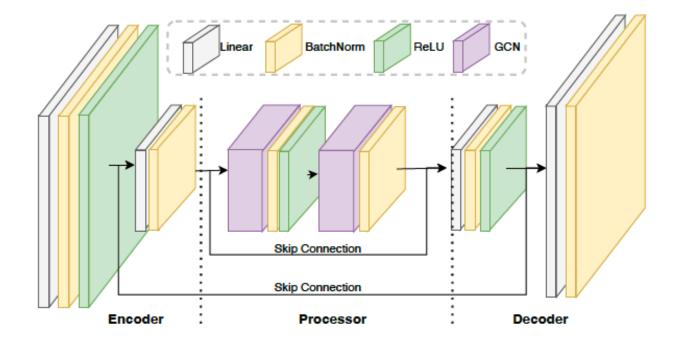
Our solution – DG4b



Our solution – DG4b



Encode-process-decode structure



Encode-process-decode structure

Real-world implementation

Baseline models

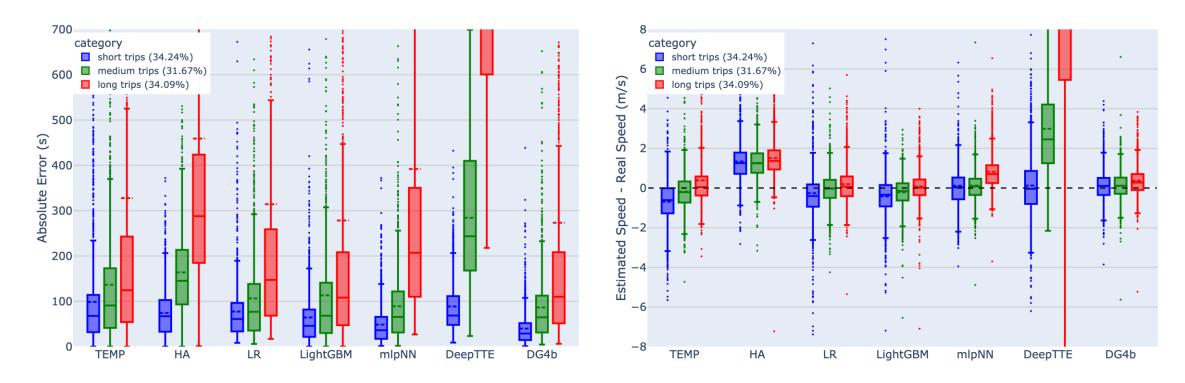
- HA: Historic Average
- TEMP: Temporally Weighted Neighbors
- LR: Linear Regression
- LightGBM: Light Gradient Boosting Machine
- mlpNN: Multi-Layer Perceptron Neural Network
- DeepTTE: Deep learning framework for Travel Time Estimation

SimRa data

- Data source: crowdsourced Berlin bicycle dataset collected via a mobile app
- Time span: June 2019 January 2025
- Data size: 22,270 trips
- Road network size: 47,896 nodes and 150,172 edges

Data scarcity!!!

Performance comparison with baseline models

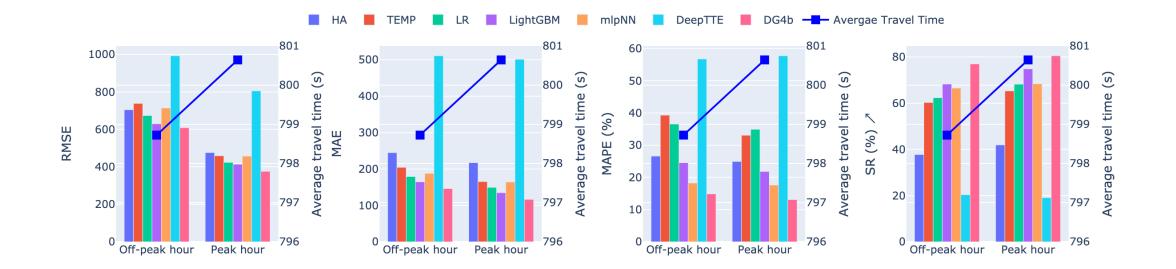


Short trips (<=8min), medium trips (8-16min), long trips (>16 min)

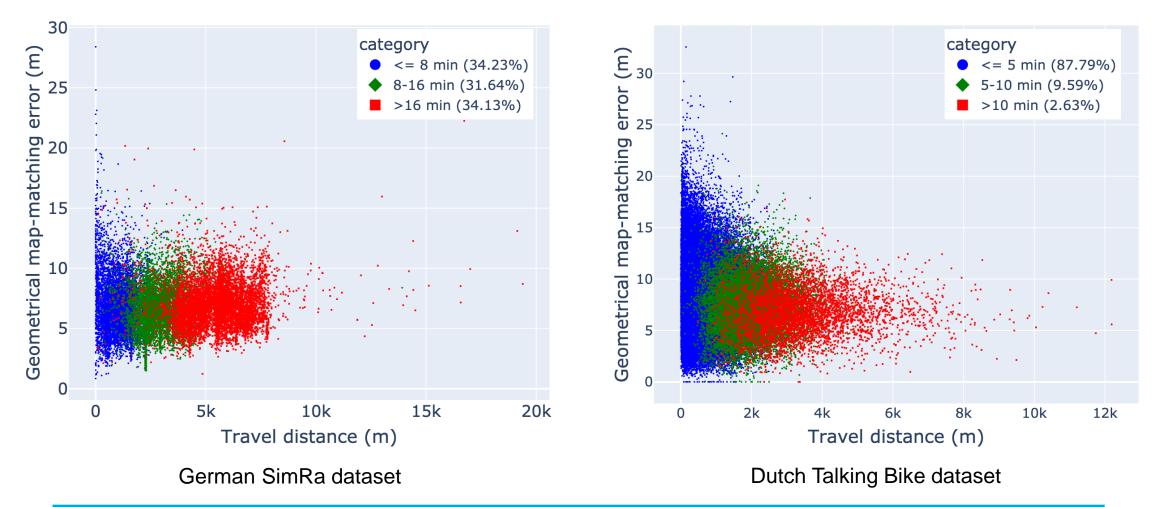
Delft

- DG4b outperforms baseline models, especially for short trips (more complicated).
- DeepTTE performs the worst -> limitation of directly apply car traffic methods on bicycles.

Peak vs off-peak hour performance



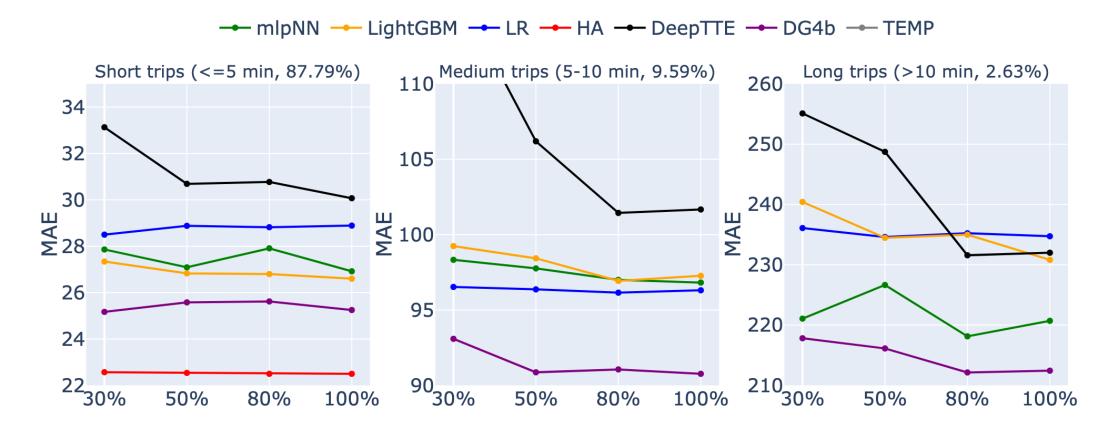
Generality on a Dutch dataset



Dutch dataset has more trips, but also more data bias and errors.

Generality on a Dutch dataset

If we keep only 30%, 50%, 80%, and 100% of short trips in the training dataset...



TUDelft

Key takeaways

- Estimating bicycle travel time is hindered by limited and low-quality real-world data.
- Car-based models are not suitable for bicycle travel time estimation due to different dynamics and constraints.
- We introduce DG4b, a dual-graph neural network that combines road infrastructure perspective and specific-trip perspective.
- DG4b outperforms baseline models on two real-world datasets: German SimRa and Dutch Talking Bike.

Thanks for your attention!

Ting Gao