Uncertainty-aware Probabilistic Travel Demand Prediction with GNN and VAE for Mobility-on-demand Services

- About me
- Problem
- Methodology
- Results

About me

Tao Peng PhD student (2nd year) Smart Public Transport Lab Department of Transport and Planning

Computer Science background Software engineer work experience

Optimization, Deep learning, Reinforcement learning Shared mobility

- About me
- Problem
- Methodology
- Results

Mobility-on-Demand

- Mobility-on-demand services
- Challenges
 - Matching under constraints
 - Dynamic demand and supply
 - Resource allocation
 - Uncertainty
- Task
 - Travel demand forecasting
 - Uncertainty quantification

Related work

- Formulate as time series forecasting problem
 - Autoregression(AR, ARIMA)
 - Deep learning(DeepAR, RNN, LSTM)
- Time series with spatial information
- Spatiotemporal forecasting
- Uncertainty quantification
 - Parametric: distribution assumption, one single value -> parameters(e.g. mean and variance)
 - Nonparametric: percentile estimation, lower-upper bound estimation

- About me
- Problem
- Methodology
- Results

Framework

Data process

- Map are divided into regions by post code and adjacency matrix are generated based on this division.
- For each region, trip records are aggerated into one-hour intervals, so the time step is one hour
- The data set is converted into a series of graphs

Spatio-Temporal Graph Convolutional Networks

Yu, B., Yin, H., and Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deeplearning framework for traffic forecasting

TUDelft

Variational autoencoder

Kernel density estimation

 Approximates the probability density function of a random variable by smoothing the distribution over the observed samples

- About me
- Problem
- Methodology
- Results

Performance

- MAE
- RMSE
- MPIW
- CRPS
- IS
- Time

Table 3: Comparison of redictive results across models (S+N: STGCN+Normal, S+L: STGCN+Lognormal,
S+V: STGCN+VAE, our proposed model; model names abbreviated due to space constraints).

Metric	Region	Point forecasting	Probabilistic forecasting					
		STGCN	S+N	S+L	DeepAR	BNN-LSTM	DGGP	S+V
MAE	All	5.7487	5.8504	24.3598	11.0107	10.0087	8.4483	5.4094
	Low demand	0.9431	0.9548	1.7435	0.7750	1.6095	1.4297	0.8815
	High demand	27.2737	27.7788	125.6621	56.8581	41.8215	37.5961	25.6908
RMSE	All	29.3497	26.0853	64.9564	35.6128	32.5472	35.2685	19.9317
	Low demand	2.4184	2.3556	4.0361	2.7630	3.4655	3.2143	2.1532
	High demand	68.5096	60.8557	151.8075	83.1558	56.0011	62.3789	46.2324
MPIW	All	-	29.4285	13761.1612	29.1572	31.2340	34.8921	23.8823
	Low demand	-	3.3382	16234.3577	1.2152	4.6783	5.1234	6.0574
	High demand	-	146.2911	2683.3019	154.3143	154.9125	167.4532	103.7229
	All	-	22.8911	24.4993	20.9385	19.8754	21.3467	17.1134
CRPS	Low demand	-	3.5585	2.2019	0.9861	1.5432	1.6789	1.0643
	High demand	-	109.4855	124.3728	110.3097	98.7654	105.4321	88.9996
IS	All	-	76.7607	13761.1699	41.9638	38.5476	45.1234	19.4128
	Low demand	-	35.5485	16234.3681	3.5794	4.8765	5.2345	3.8665
	High demand	-	261.3572	2683.3020	213.8939	198.7654	220.9876	89.0475
Time	Train(min)	15	15	15	45	35	210	17
	Test(min)	1	1	1	5	5	20	2

Visualization of example locations

Uncertainty quantification

- Showing the different travel pattern at different regions
- Align with the real world

Thank you for your attention

Tao Peng