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Covariance relationships between data points

▶ Data usually contains latent interconnections

Brain Financial Body movement

▶ One way to capture these relations is through the covariance matrix
⇒ C = E[(x− µ)(x− µ)T]
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Principal Component Analysis (PCA)

▶ Project the data onto the covariance eigenspace
⇒ C = VΛV⊤

⇒ x̃ = V⊤x

▶ Select (filter) the directions that maximize the variance of data points
⇒ Used for dimensionality reduction by selecting only a few eigenvectors
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Covariance Filters

▶ Data sample x = [x1, . . . , xN ]T with covariance C

⇒ Build a graph where:
⇒ the features are the node signals xi

⇒ the edges are the covariance values cij → fully-connected graph

Sihag, Mateos, McMillan & Ribeiro. coVariance Neural Networks. NeurIPS, 2022
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Covariance Filters
▶ Definition: Graph convolution covariance filters

z = H(Ĉ)x =
K∑

k=0

hkĈ
kx

⇒ learnable parameters: hk
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K∑

k=0

hkĈ
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Ĉ Ĉ Ĉ
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Covariance Neural Networks (VNNs)

▶ Definition: Covariance filters followed by pointwise nonlinearities σ

xl = σ
(
Hl(Ĉ)xl−1

)
l = 1, . . . , L.

Layer 1

Layer 2

x

z1 =

K−1∑
k=0

h1k Ĉ
k
x x1 = σ

[
z1

]z1

z2 =

K−1∑
k=0

h2k Ĉ
k
x1 x2 = σ

[
z2

]z2

x1

x1

x3 = Φ(x; Ĉ,H)

Sihag, Mateos, McMillan & Ribeiro. coVariance Neural Networks. NeurIPS, 2022
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Connections to PCA

▶ The covariance filter matrix has the form

H(Ĉ)x =
K∑

k=0

hkĈ
kx

▶ Taking the eigendecomposition Ĉ = V̂Λ̂V̂⊤ we get

H(V̂Λ̂V̂⊤)x =

K∑
k=0

hkV̂Λ̂kV̂⊤x
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Connections to PCA

▶ The covariance filter matrix has the form

H(Ĉ)x =
K∑

k=0

hkĈ
kx

▶ Taking the eigendecomposition Ĉ = V̂Λ̂V̂⊤ we get

H(V̂Λ̂V̂⊤)x =
K∑

k=0

hkV̂Λ̂kV̂⊤x

⇒ The covariance filter processes the principal components V̂⊤x!
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Outliers

▶ However, data might contain outliers or missing values

⇒ PCA estimation is heavily affected
⇒ VNNs do not work reliably
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Robust Covariance Neural Networks

Desiderata:
▶ Use covariances for data processing

⇒ with a learnable filter function

▶ Be robust to outliers and missing values
⇒ via covariance correction terms learned end-to-end

▶ Be stable to finite-sample estimation errors



11/24

Outline

▶ Robust Covariance Neural Networks

▶ Theoretical results

▶ Experiments

▶ Conclusions
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Data Perturbation Model

▶ Following robust PCA:
⇒ Data L is low-rank
⇒ Perturbations S are sparse

X = L+ S

X L S

▶ The observed covariance Ĉ is

Ĉ = XXT/T = (L+ S)(L+ S)T/T = (LLT + SLT + LST + SST)/T

⇒ where SLT + LST is low-rank and SST is sparse
▶ We reconstruct the clean covariance Ĉ = LLT/T as

Ĉ = Ĉ+Es +El (1)

⇒ where Es is sparse and El is low-rank.

Candès, Emmanuel J., et al. "Robust principal component analysis?." Journal of the ACM (JACM) 58.3 (2011): 1-37.



13/24

Data Perturbation Model

▶ Following robust PCA:
⇒ Data L is low-rank
⇒ Perturbations S are sparse

X = L+ S

X L S

▶ The observed covariance Ĉ is
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Robust Covariance Neural Networks (RVNNs)

▶ RVNNs are VNNs Φ trained with the following objective

min
H,Es,El

L(Φ(H, Ĉ+Es +El),Xtr,ytr) + γs∥Es∥1 + γl∥El∥∗
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Robust Covariance Neural Networks (RVNNs)

▶ RVNNs are VNNs Φ trained with the following objective

min
H,Es,El

L(Φ(H, Ĉ+Es +El),Xtr,ytr) + γs∥Es∥1 + γl∥El∥∗

⇒ prediction loss L on a training set (Xtr,ytr)

⇒ the VNN operates on the corrected covariance Ĉ+Es +El

⇒ promote sparsity for Es via the 1-norm
⇒ promote low-rank structure for El via the nuclear norm
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Outline
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Stability of RVNNs

▶ The observed covariance Ĉ contains multiple perturbations w.r.t. the true covariance C

⇒ due to outliers
⇒ due to finite-sample estimation

▶ Stability of RVNN to covariance perturbations

∥H(Ĉ+Es +El)−H(C)∥ ≤ P
√
N(1 +

√
N)(O(T−1/2) + δ)

⇒ Stability improves with increasing number of samples T

⇒ δ = ∥C̃− Ĉ−Es −El∥ measures the quality of reconstruction of the clean covariance matrix
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Synthetic Dataset

▶ Setup: Regression task, varying size of missing data

▶ Baselines: VNN on clean data (VNN-C), VNN on perturbed data (VNN-P), RPCA+VNN
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▶ Results:
⇒ RVNN matches or improves performance of VNN-C for missing rate ≤ 0.05

⇒ Based on γs, γl, covariance reconstruction is good or bad
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Real Datasets

▶ Datasets:
⇒ Brain recordings before and after epilepsy seizure – binary classification
⇒ Motion sensor recordings – activity classification
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▶ Results:
⇒ RVNN less affected by missing values than other models
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Conclusions

▶ Outliers and missing values make covariance
estimation difficult
⇒ PCA and VNN are unreliable

5 0 5 10
6

4

2

0

2

4

True
Sample
Perturbed

▶ Robust Covariance Neural Networks (RVNNs)
⇒ Sparse and low-rank covariance correction learned

end-to-end
⇒ Stable to finite-sample estimation errors
⇒ Maintain downstream performance for varying

missing rates

∥H(Ĉ+Es +El)−H(C)∥ ≤

P
√
N(1 +

√
N)(O(T−1/2) + δ)

▶ Thank you for the attention!
⇒ a.cavallo@tudelft.nl
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