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Covariance relationships between data points

Data usually contains latent interconnections

Sensor Signals

Wearable Sensors.

-
Financial Body movement

One way to capture these relations is through the covariance matrix
C=E[(x—p)(x—pn)T]
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Principal Component Analysis (PCA)

Project the data onto the covariance eigenspace
C=VAVT
=VTx

M

Select (filter) the directions that maximize the variance of data points

Used for dimensionality reduction by selecting only a few eigenvectors
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Principal Component Analysis (PCA)

Project the data onto the covariance eigenspace
C=VAVT

=VTx

Select (filter) the directions that maximize the variance of data points
Used for dimensionality reduction by selecting only a few eigenvectors
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Covariance Filters

Data sample x = [z1,...,2x]" with covariance C
Build a graph where:
the features are the node signals x;

the edges are the covariance values ¢;; — fully-connected graph

X = [mla :I:Q, I3,T4, 1175]
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Covariance Filters

Definition: Graph convolution covariance filters

K
z=H(C)x = Z hi, CFx
k=0

learnable parameters: hy
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Covariance Neural Networks (VINNs)

Definition: Covariance filters followed by pointwise nonlinearities o

x' =o (Hl(é)xl—l) I=1,...,L.

x
¥
K—1 . 7
z] = hip C" x x1=o'[z1]
k=0
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N z2
Zo = Z thCkxl xzzo'[zz]
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Layer 2

> x5 = o(x; C, H)




Connections to PCA

The covariance filter matrix has the form

K
H(C)x = Z hy CFx
k=0




Connections to PCA

The covariance filter matrix has the form




Connections to PCA

The covariance filter matrix has the form

The covariance filter processes the principal components V ' x!
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Outliers

However, data might contain outliers or missing values




Outliers

However, data might contain outliers or missing values
PCA estimation is heavily affected
VNNs do not work reliably
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Robust Covariance Neural Networks

Desiderata:
Use covariances for data processing

with a learnable filter function

Be robust to outliers and missing values

via covariance correction terms learned end-to-end

Be stable to finite-sample estimation errors
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Data Perturbation Model

Following robust PCA:
Data L is low-rank

Perturbations S are sparse

X=L+S




Data Perturbation Model

Following robust PCA: X L S
Data L is low-rank

Perturbations S are sparse

X=L+S

The observed covariance C is

C=XXT/T=(L+8S)(L+8)"/T=@L" +SL" +LS" +ss")/T

where SLT + LS is low-rank and SST is sparse
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Data Perturbation Model

Following robust PCA: X L S
Data L is low-rank

Perturbations S are sparse

X=L+S

The observed covariance C is

C=XXT/T=(L+8S)(L+8)"/T=@L" +SL" +LS" +ss")/T

where SLT + LS is low-rank and SST is sparse
We reconstruct the clean covariance € = LLT /T as

C=C+E.+E (1)

where E; is sparse and E; is low-rank.
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Robust Covariance Neural Networks (RVNNs)

RVNNs are VNNs & trained with the following objective

min_ L(®(H, C + Eq + Ep), Xer, ytr) + vs|Esll1 + vl Bl

s s, B




Robust Covariance Neural Networks (RVNNs)
RVNNs are VNNs & trained with the following objective

min_ L(®(H,C + E,s + E}), Xir, yir)

EECERE )

prediction loss £ on a training set (X¢r, Ytr)

the VNN operates on the corrected covariance C+E,+ E;




Robust Covariance Neural Networks (RVNNs)
RVNNs are VNNs & trained with the following objective

min "/SHESH 1
H,Es,E;

prediction loss £ on a training set (X¢r, Ytr)

the VNN operates on the corrected covariance C+E,+ E;

promote sparsity for E; via the 1-norm




Robust Covariance Neural Networks (RVNNs)
RVNNs are VNNs & trained with the following objective
min
H,Es E;

prediction loss £ on a training set (X¢r, Ytr)
the VNN operates on the corrected covariance C+E,+ E;

promote sparsity for E; via the 1-norm

promote low-rank structure for E; via the nuclear norm
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Stability of RVINNs

The observed covariance € contains multiple perturbations w.r.t. the true covariance C

due to outliers

due to finite-sample estimation




Stability of RVINNs

The observed covariance € contains multiple perturbations w.r.t. the true covariance C
due to outliers

due to finite-sample estimation

Stability of RVNN to covariance perturbations

[H(C + Es + E;) - H(C)|| < PVN(L+ VN)(O(T /%) +9)
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Stability of RVINNs

The observed covariance € contains multiple perturbations w.r.t. the true covariance C
due to outliers

due to finite-sample estimation

Stability of RVNN to covariance perturbations

IH(C + Es + E;) - H(C)| < PVN(1+VN)(O(T /%) +5)
Stability improves with increasing number of samples 7"

§ = ||C — € — Es — E;|| measures the quality of reconstruction of the clean covariance matrix
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Synthetic Dataset

Setup: Regression task, varying size of missing data

Baselines: VNN on clean data (VNN-C), VNN on perturbed data (VNN-P), RPCA+VNN
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Results:

RVNN matches or improves performance of VNN-C for missing rate < 0.05

Based on «s,7;, covariance reconstruction is good or bad

7% [ —



Real Datasets

Datasets:
Brain recordings before and after epilepsy seizure — binary classification

Motion sensor recordings — activity classification
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Results:
RVNN less affected by missing values than other models
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Conclusions

Outliers and missing values make covariance
estimation difficult

PCA and VNN are unreliable
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Conclusions

Outliers and missing values make covariance
estimation difficult

PCA and VNN are unreliable

Robust Covariance Neural Networks (RVNNs)

Sparse and low-rank covariance correction learned
end-to-end

Stable to finite-sample estimation errors

Maintain downstream performance for varying
missing rates
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Conclusions
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Robust Covariance Neural Networks (RVNNs) ||H(C 4B, +E) - HQ)| <
s 1) — =

Sparse and low-rank covariance correction learned 1/9
oT=1?) 6

end-to-end
Stable to finite-sample estimation errors

Maintain downstream performance for varying
missing rates

Thank you for the attention!
a.cavallo@tudelft.nl
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