Robust Covariance Neural Networks

 ${\bf Andrea~Cavallo^*},\,{\bf Ayushman~Raghuvanshi^\dagger},\,{\bf Sundeep~Prabhakar~Chepuri^\dagger},\,{\bf Elvin~Isufi^*}$

*Delft University of Technology, Delft, Netherlands †Indian Institute of Science, Bangalore, India

a.cavallo@tudelft.nl

Covariance relationships between data points

▶ Data usually contains latent interconnections

One way to capture these relations is through the covariance matrix

$$\Rightarrow \mathbf{C} = \mathbb{E}[(\mathbf{x} - oldsymbol{\mu})(\mathbf{x} - oldsymbol{\mu})^\mathsf{T}]$$

Principal Component Analysis (PCA)

- ▶ Project the data onto the covariance eigenspace
 - $\Rightarrow \mathbf{C} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\top}$
 - $\Rightarrow \mathbf{\tilde{x}} = \mathbf{V}^{\top}\mathbf{x}$
- ▶ Select (filter) the directions that maximize the variance of data points
 - \Rightarrow Used for dimensionality reduction by selecting only a few eigenvectors

Principal directions

Principal Component Analysis (PCA)

- ▶ Project the data onto the covariance eigenspace
 - $\Rightarrow \mathbf{C} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\top}$
 - $\Rightarrow \mathbf{\tilde{x}} = \mathbf{V}^{\top}\mathbf{x}$
- ▶ Select (filter) the directions that maximize the variance of data points
 - \Rightarrow Used for dimensionality reduction by selecting only a few eigenvectors

PCA filtering

Covariance Filters

- ▶ Data sample $\mathbf{x} = [x_1, \dots, x_N]^\mathsf{T}$ with covariance \mathbf{C}
 - \Rightarrow Build a graph where:
 - \Rightarrow the features are the node signals x_i
 - \Rightarrow the edges are the covariance values $c_{ij} \rightarrow$ fully-connected graph

Covariance Filters

▶ Definition: Graph convolution covariance filters

$$\mathbf{z} = \mathbf{H}(\mathbf{\hat{C}})\mathbf{x} = \sum_{k=0}^{K} h_k \mathbf{\hat{C}}^k \mathbf{x}$$

 \Rightarrow learnable parameters: h_k

Covariance Filters

▶ Definition: Graph convolution covariance filters

$$\mathbf{z} = \mathbf{H}(\hat{\mathbf{C}})\mathbf{x} = \sum_{k=0}^{K} h_k \hat{\mathbf{C}}^k \mathbf{x}$$

 \Rightarrow learnable parameters: h_k

 $ightharpoonup \hat{\mathbf{C}}^k \mathbf{x}$ shifts signal \mathbf{x} k times over the covariance graph $\hat{\mathbf{C}}$

Covariance Neural Networks (VNNs)

Definition: Covariance filters followed by pointwise nonlinearities σ

$$\mathbf{x}^l = \sigma\left(\mathbf{H}^l(\hat{\mathbf{C}})\mathbf{x}^{l-1}\right) \quad l = 1, \dots, L.$$

Connections to PCA

► The covariance filter matrix has the form

$$\mathbf{H}(\mathbf{\hat{C}})\mathbf{x} = \sum_{k=0}^{K} h_k \mathbf{\hat{C}}^k \mathbf{x}$$

Connections to PCA

► The covariance filter matrix has the form

$$\mathbf{H}(\hat{\mathbf{C}})\mathbf{x} = \sum_{k=0}^{K} h_k \hat{\mathbf{C}}^k \mathbf{x}$$

▶ Taking the eigendecomposition $\hat{\mathbf{C}} = \hat{\mathbf{V}}\hat{\mathbf{\Lambda}}\hat{\mathbf{V}}^{\top}$ we get

$$\mathbf{H}(\hat{\mathbf{V}}\hat{\mathbf{\Lambda}}\hat{\mathbf{V}}^{ op})\mathbf{x} = \sum_{k=0}^K h_k \hat{\mathbf{V}}\hat{\mathbf{\Lambda}}^k \hat{\mathbf{V}}^{ op}\mathbf{x}$$

Connections to PCA

The covariance filter matrix has the form

$$\mathbf{H}(\hat{\mathbf{C}})\mathbf{x} = \sum_{k=0}^{K} h_k \hat{\mathbf{C}}^k \mathbf{x}$$

ightharpoonup Taking the eigendecomposition $\hat{\mathbf{C}} = \hat{\mathbf{V}}\hat{\mathbf{\Lambda}}\hat{\mathbf{V}}^{\top}$ we get

$$\mathbf{H}(\hat{\mathbf{V}}\hat{\mathbf{\Lambda}}\hat{\mathbf{V}}^{\top})\mathbf{x} = \sum_{k=0}^{K} h_k \hat{\mathbf{V}}\hat{\mathbf{\Lambda}}^k \hat{\mathbf{V}}^{\top}\mathbf{x}$$

 \Rightarrow The covariance filter processes the principal components $\hat{\mathbf{V}}^{\top}\mathbf{x}$!

Outliers

► However, data might contain outliers or missing values

Outliers

- ► However, data might contain outliers or missing values
 - ⇒ PCA estimation is heavily affected
 - \Rightarrow VNNs do not work reliably

Robust Covariance Neural Networks

Desiderata:

- ▶ Use covariances for data processing
 - ⇒ with a learnable filter function
- ▶ Be robust to outliers and missing values
 - ⇒ via covariance correction terms learned end-to-end
- ▶ Be stable to finite-sample estimation errors

Outline

- ► Robust Covariance Neural Networks
- ► Theoretical results
- Experiments
- Conclusions

Outline

- ► Robust Covariance Neural Networks
- ► Theoretical results
- ► Experiments
- Conclusions

Data Perturbation Model

- Following robust PCA:
 - \Rightarrow Data **L** is low-rank
 - \Rightarrow Perturbations **S** are sparse

$$\mathbf{X} = \mathbf{L} + \mathbf{S}$$

Data Perturbation Model

- Following robust PCA:
 - \Rightarrow Data **L** is low-rank
 - \Rightarrow Perturbations **S** are sparse

$$\mathbf{X} = \mathbf{L} + \mathbf{S}$$

ightharpoonup The observed covariance $\hat{\mathbf{C}}$ is

$$\hat{\mathbf{C}} = \mathbf{X}\mathbf{X}^\mathsf{T}/T = (\mathbf{L} + \mathbf{S})(\mathbf{L} + \mathbf{S})^\mathsf{T}/T = (\mathbf{L}\mathbf{L}^\mathsf{T} + \mathbf{S}\mathbf{L}^\mathsf{T} + \mathbf{L}\mathbf{S}^\mathsf{T} + \mathbf{S}\mathbf{S}^\mathsf{T})/T$$

 \mathbf{X}

 \Rightarrow where $SL^{T} + LS^{T}$ is low-rank and SS^{T} is sparse

Data Perturbation Model

- Following robust PCA:
 - \Rightarrow Data **L** is low-rank
 - \Rightarrow Perturbations **S** are sparse

$$\mathbf{X} = \mathbf{L} + \mathbf{S}$$

X L S

ightharpoonup The observed covariance $\hat{\mathbf{C}}$ is

$$\hat{\mathbf{C}} = \mathbf{X}\mathbf{X}^{\mathsf{T}}/T = (\mathbf{L} + \mathbf{S})(\mathbf{L} + \mathbf{S})^{\mathsf{T}}/T = (\mathbf{L}\mathbf{L}^{\mathsf{T}} + \mathbf{S}\mathbf{L}^{\mathsf{T}} + \mathbf{L}\mathbf{S}^{\mathsf{T}} + \mathbf{S}\mathbf{S}^{\mathsf{T}})/T$$

- \Rightarrow where $SL^{T} + LS^{T}$ is low-rank and SS^{T} is sparse
- ▶ We reconstruct the clean covariance $\hat{\mathbf{C}} = \mathbf{L}\mathbf{L}^{\mathsf{T}}/T$ as

$$\hat{\mathbf{C}} = \hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l \tag{1}$$

 \Rightarrow where \mathbf{E}_s is sparse and \mathbf{E}_l is low-rank.

ightharpoonup RVNNs are VNNs Φ trained with the following objective

$$\min_{\mathcal{H}, \mathbf{E}_s, \mathbf{E}_l} \mathcal{L}(\Phi(\mathcal{H}, \hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l), \mathbf{X}_{\mathrm{tr}}, \mathbf{y}_{\mathrm{tr}}) + \gamma_s \|\mathbf{E}_s\|_1 + \gamma_l \|\mathbf{E}_l\|_*$$

▶ RVNNs are VNNs Φ trained with the following objective

$$\min_{\mathcal{H}, \mathbf{E}_s, \mathbf{E}_l} \mathcal{L}(\Phi(\mathcal{H}, \hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l), \mathbf{X}_{tr}, \mathbf{y}_{tr}) + \gamma_s \|\mathbf{E}_s\|_1 + \gamma_l \|\mathbf{E}_l\|_*$$

- \Rightarrow prediction loss \mathcal{L} on a training set $(\mathbf{X}_{\mathrm{tr}}, \mathbf{y}_{\mathrm{tr}})$
- \Rightarrow the VNN operates on the corrected covariance $\hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l$

 \triangleright RVNNs are VNNs Φ trained with the following objective

$$\min_{\mathcal{H},\mathbf{E}_s,\mathbf{E}_l} \mathcal{L}(\Phi(\mathcal{H},\hat{\mathbf{C}}+\mathbf{E}_s+\mathbf{E}_l),\mathbf{X}_{tr},\mathbf{y}_{tr}) + \gamma_s \|\mathbf{E}_s\|_1 + \gamma_l \|\mathbf{E}_l\|_*$$

- \Rightarrow prediction loss \mathcal{L} on a training set $(\mathbf{X}_{\mathrm{tr}}, \mathbf{y}_{\mathrm{tr}})$
- \Rightarrow the VNN operates on the corrected covariance $\hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l$
- \Rightarrow promote sparsity for \mathbf{E}_s via the 1-norm

 \triangleright RVNNs are VNNs Φ trained with the following objective

$$\min_{\mathcal{H},\mathbf{E}_s,\mathbf{E}_l} \mathcal{L}(\Phi(\mathcal{H},\hat{\mathbf{C}}+\mathbf{E}_s+\mathbf{E}_l),\mathbf{X}_{tr},\mathbf{y}_{tr}) + \gamma_s \|\mathbf{E}_s\|_1 + \gamma_l \|\mathbf{E}_l\|_*$$

- \Rightarrow prediction loss \mathcal{L} on a training set $(\mathbf{X}_{\mathrm{tr}}, \mathbf{y}_{\mathrm{tr}})$
- \Rightarrow the VNN operates on the corrected covariance $\hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l$
- \Rightarrow promote sparsity for \mathbf{E}_s via the 1-norm
- \Rightarrow promote low-rank structure for \mathbf{E}_l via the nuclear norm

Outline

- ► Robust Covariance Neural Networks
- ► Theoretical results
- ► Experiments
- ► Conclusions

- The observed covariance $\hat{\mathbf{C}}$ contains multiple perturbations w.r.t. the true covariance \mathbf{C}
 - \Rightarrow due to outliers
 - \Rightarrow due to finite-sample estimation

- ightharpoonup The observed covariance $\hat{\mathbf{C}}$ contains multiple perturbations w.r.t. the true covariance \mathbf{C}
 - \Rightarrow due to outliers
 - \Rightarrow due to finite-sample estimation

► Stability of RVNN to covariance perturbations

$$\|\mathbf{H}(\hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l) - \mathbf{H}(\mathbf{C})\| \le P\sqrt{N}(1 + \sqrt{N})(\mathcal{O}(T^{-1/2}) + \delta)$$

- The observed covariance $\hat{\mathbf{C}}$ contains multiple perturbations w.r.t. the true covariance \mathbf{C}
 - \Rightarrow due to outliers
 - \Rightarrow due to finite-sample estimation

► Stability of RVNN to covariance perturbations

$$\|\mathbf{H}(\hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l) - \mathbf{H}(\mathbf{C})\| \le P\sqrt{N}(1 + \sqrt{N})(\mathcal{O}(T^{-1/2}) + \delta)$$

 \Rightarrow Stability improves with increasing number of samples T

- ▶ The observed covariance Ĉ contains multiple perturbations w.r.t. the true covariance C
 - \Rightarrow due to outliers
 - \Rightarrow due to finite-sample estimation

► Stability of RVNN to covariance perturbations

$$\|\mathbf{H}(\hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l) - \mathbf{H}(\mathbf{C})\| \le P\sqrt{N}(1 + \sqrt{N})(\mathcal{O}(T^{-1/2}) + \delta)$$

- \Rightarrow Stability improves with increasing number of samples T
- $\phi = \|\mathbf{\tilde{C}} \mathbf{\hat{C}} \mathbf{E}_s \mathbf{E}_l\|$ measures the quality of reconstruction of the clean covariance matrix

Outline

- ► Robust Covariance Neural Networks
- ► Theoretical results
- **▶** Experiments
- Conclusions

Synthetic Dataset

- Setup: Regression task, varying size of missing data
- Baselines: VNN on clean data (VNN-C), VNN on perturbed data (VNN-P), RPCA+VNN

Results:

- \Rightarrow RVNN matches or improves performance of VNN-C for missing rate ≤ 0.05
- \Rightarrow Based on γ_s, γ_l , covariance reconstruction is good or bad

Real Datasets

Datasets:

- ⇒ Brain recordings before and after epilepsy seizure binary classification
- ⇒ Motion sensor recordings activity classification

Results:

⇒ RVNN less affected by missing values than other models

Outline

- ► Robust Covariance Neural Networks
- ► Theoretical results
- ► Experiments
- **▶** Conclusions

Conclusions

- Outliers and missing values make covariance estimation difficult
 - \Rightarrow PCA and VNN are unreliable

Conclusions

- Outliers and missing values make covariance estimation difficult
 - \Rightarrow PCA and VNN are unreliable

- ► Robust Covariance Neural Networks (RVNNs)
 - \Rightarrow Sparse and low-rank covariance correction learned end-to-end
 - \Rightarrow Stable to finite-sample estimation errors
 - \Rightarrow Maintain downstream performance for varying missing rates

$$\|\mathbf{H}(\hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l) - \mathbf{H}(\mathbf{C})\| \le P\sqrt{N}(1 + \sqrt{N})(\mathcal{O}(T^{-1/2}) + \delta)$$

Conclusions

- Outliers and missing values make covariance estimation difficult
 - \Rightarrow PCA and VNN are unreliable

- ► Robust Covariance Neural Networks (RVNNs)
 - \Rightarrow Sparse and low-rank covariance correction learned end-to-end
 - \Rightarrow Stable to finite-sample estimation errors
 - \Rightarrow Maintain downstream performance for varying missing rates
- ► Thank you for the attention!
 - ⇒ a.cavallo@tudelft.nl

$$\|\mathbf{H}(\hat{\mathbf{C}} + \mathbf{E}_s + \mathbf{E}_l) - \mathbf{H}(\mathbf{C})\| \le P\sqrt{N}(1 + \sqrt{N})(\mathcal{O}(T^{-1/2}) + \delta)$$

