Hodge-Aware Subspace Detector

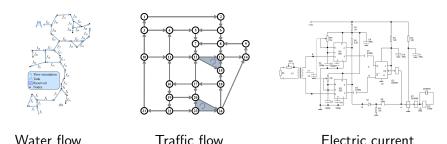
Chengen Liu Elvin Isufi

Delft University of Technology, The Netherlands

e.isufi-1@tudelft.nl

November 3, 2025

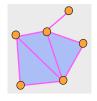
Motivation

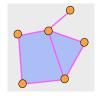


- Water networks: detecting water leakage
- Traffic networks: detecting traffic jams
- Power networks: detecting outages

Motivation

Detecting anomalies in signals with multi-way dependencies



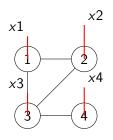


Challenge

- Data contain an irregular structure
- A detector with theoretical guarantees

Graph Structure of Node Signals

- Graph \mathcal{G} with Laplacian matrix **L**
- Graph signals are mappings $x: \mathcal{V} \to \mathbb{R}$

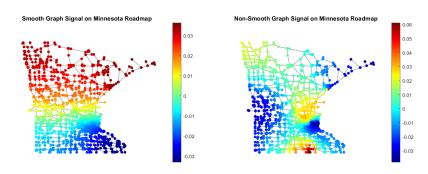


$$\mathbf{L} = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

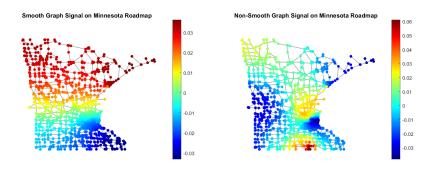
Detection with Graph Signals

- Normal behavior smooth signal $\mathbf{x}^{\mathsf{T}}\mathbf{L}\mathbf{x}$ is small
- Anomaly nonsmooth x^TLx is high



Detection with Graph Signals

- Normal behavior smooth signal $\mathbf{x}^T \mathbf{L} \mathbf{x}$ is small
- Anomaly nonsmooth x^TLx is high



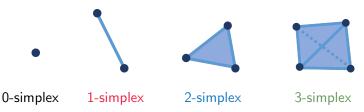
Goal: Develop a detection theory for signals on edges and beyond

Topological Data Structure

Simplicial complexes

- 0-simplices: nodes single element
- 1-simplices: edges pair-wise relationships
- 2-simplices: triangles relationships of 3 elements
- 3-simplices: tetrahedrons relationships of 4 elements

• ..



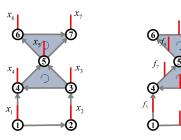
Simplicial Signals

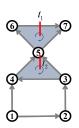
- $Mapping^1$ from simplices to \mathbb{R}
- We collect k-signal into the vector $\mathbf{s}^k = \left[s_1^k, \dots, s_{N_k}^k\right]^{\mathsf{T}}$

¹S. Barbarossa and S. Sardellitti (2020). "Topological signal processing over simplicial complexes". In: IEEE Transactions on Signal Processing 68, pp. 2992–3007

Simplicial Signals

- $Mapping^1$ from simplices to $\mathbb R$
- We collect k-signal into the vector $\mathbf{s}^k = \left[s_1^k, \dots, s_{N_k}^k\right]^{\mathsf{T}}$
- Node signals: Measurements of temperature, water pressure
- Edge signals: Measurement of water flow, traffic flow
- Triangle signals: EEG measurements of three voxel interaction





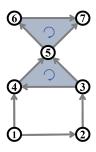
¹S. Barbarossa and S. Sardellitti (2020). "Topological signal processing over simplicial complexes". In: *IEEE Transactions on Signal Processing* 68, pp. 2992–3007

Algebraic Representation of Simplicial Complexes

Topology can be represented by incidence matrices

- **B**₁: node-to-edge incidence matrix
- **B**₂: edge-to-triangle incidence matrix
- •

				edges	5					1	triar	<u> </u>	ì
$\mathbf{B_1} = \begin{bmatrix} 1 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 0 0 -1 0 0	0 1 -1 0 0 0	0 0 1 -1 0 0	0 0 0 1 -1 0	0 0 1 0 -1 0	0 0 0 0 1 -1	0 0 0 0 1 0 -1	0 0 0 0 0 1 -1	nodes	B ₂ =	0 0 0 1 1 -1 0 0	0 0 0 0 0 0 1 -1	edges



The whole structure is represented by the Hodge Laplacians:

$$\mathbf{L}_0 = \mathbf{B}_1 \mathbf{B}_1^{\mathsf{T}}$$

$$\mathbf{L}_k = \mathbf{B}_k^{\mathsf{T}} \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^{\mathsf{T}} \quad k = 1, \dots, K-1$$

$$\mathbf{L}_K = \mathbf{B}_K^{\mathsf{T}} \mathbf{B}_K$$

The whole structure is represented by the Hodge Laplacians:

$$\mathbf{L}_0 = \mathbf{B}_1 \mathbf{B}_1^{\mathsf{T}}$$

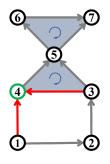
$$\mathbf{L}_k = \mathbf{B}_k^{\mathsf{T}} \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^{\mathsf{T}} \quad k = 1, \dots, K-1$$

$$\mathbf{L}_K = \mathbf{B}_K^{\mathsf{T}} \mathbf{B}_K$$

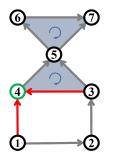
Two terms in Hodge Laplacians \mathbf{L}_k :

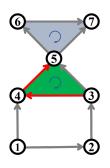
- Lower Laplacian: $\mathbf{L}_{k,\ell} = \mathbf{B}_k^{\mathsf{T}} \mathbf{B}_k$ represents lower adjacencies
- Upper Laplacian: $L_{k,u} = B_{k+1}B_{k+1}^{\mathsf{T}}$ represents upper adjacencies

- Lower Laplacian: $L_{k,\ell} = \mathbf{B}_k^{\mathsf{T}} \mathbf{B}_k$ represents lower adjacencies
- Edges (3, 4) and (1, 4) are lower adjacent



- Lower Laplacian: $L_{k,\ell} = \mathbf{B}_k^{\mathsf{T}} \mathbf{B}_k$ represents lower adjacencies
- Edges (3, 4) and (1, 4) are lower adjacent





- Upper Laplacian: $L_{k,u} = B_{k+1}B_{k+1}^{\mathsf{T}}$ represents upper adjacencies
- Edge (3, 4) and (4, 5) are upper adjacent

Hodge Laplacian structure

$$\mathbf{L}_k = \mathbf{B}_k^{\mathsf{T}} \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^{\mathsf{T}}$$

Hodge Laplacian structure

$$\mathbf{L}_k = \mathbf{B}_k^{\mathsf{T}} \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^{\mathsf{T}}$$

• The space of k-signal can be decomposed into three subspaces

$$\mathbb{R}^{N_k} \equiv \operatorname{im}\left(\mathbf{B}_k^{\mathsf{T}}\right) \oplus \ker\left(\mathbf{L}_k\right) \oplus \operatorname{im}\left(\mathbf{B}_{k+1}\right)$$

Hodge Laplacian structure

$$\mathbf{L}_k = \mathbf{B}_k^{\mathsf{T}} \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^{\mathsf{T}}$$

• The space of k-signal can be decomposed into three subspaces

$$\mathbb{R}^{N_k} \equiv \operatorname{im}\left(\mathbf{B}_k^{\mathsf{T}}\right) \oplus \ker\left(\mathbf{L}_k\right) \oplus \operatorname{im}\left(\mathbf{B}_{k+1}\right)$$

Any edge flow signal can be decomposed as

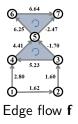
$$\mathbf{f} = \mathbf{f}_{\mathrm{G}} + \mathbf{f}_{\mathrm{C}} + \mathbf{f}_{\mathrm{H}}$$

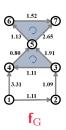
Hodge Components

Edge flow signal can be decomposed as

$$\mathbf{f} = \mathbf{f}_{\mathrm{G}} + \mathbf{f}_{\mathrm{C}} + \mathbf{f}_{\mathrm{H}}$$

• Gradient flow f_G: Difference of node signals



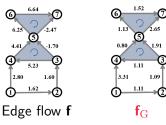


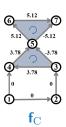
Hodge Components

Edge flow signal can be decomposed as

$$\mathbf{f} = \mathbf{f}_{\mathrm{G}} + \mathbf{f}_{\mathrm{C}} + \mathbf{f}_{\mathrm{H}}$$

- Gradient flow f_G: Difference of node signals
- Curl flow f_C: Local flows circulating around triangles



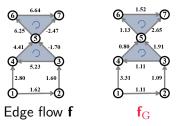


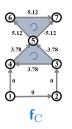
Hodge Components

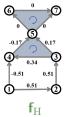
Edge flow signal can be decomposed as

$$\mathbf{f} = \mathbf{f}_{\mathrm{G}} + \mathbf{f}_{\mathrm{C}} + \mathbf{f}_{\mathrm{H}}$$

- Gradient flow f_G: Difference of node signals
- Curl flow f_C: Local flows circulating around triangles
- Harmonic flow f_H: Global circulating flow







- Eigendecomposition of the first Hodge Laplacian $\mathbf{L}_1 = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$
- The eigenvectors \mathbf{U} can be rearranged into $[\mathbf{U}_G \ \mathbf{U}_C \ \mathbf{U}_H]$

- Eigendecomposition of the first Hodge Laplacian $\mathbf{L}_1 = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$
- ullet The eigenvectors $oldsymbol{\mathsf{U}}$ can be rearranged into $oldsymbol{[U_\mathrm{G}\ U_\mathrm{C}\ U_\mathrm{H}]}$

Edge flow signal can be decomposed as

$$\boldsymbol{f} = \boldsymbol{f}_{\mathrm{G}} + \boldsymbol{f}_{\mathrm{C}} + \boldsymbol{f}_{\mathrm{H}}$$

Hodge eigenvectors

• $U_{\rm G}$ spans the gradient subspace, $f_{\rm G}$ = $U_{\rm G}\hat{f}_{\rm G}$

- Eigendecomposition of the first Hodge Laplacian $\mathbf{L}_1 = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathsf{T}}$
- ullet The eigenvectors $oldsymbol{\mathsf{U}}$ can be rearranged into $oldsymbol{[U_\mathrm{G}\ U_\mathrm{C}\ U_\mathrm{H}]}$

Edge flow signal can be decomposed as

$$\boldsymbol{f} = \boldsymbol{f}_{\mathrm{G}} + \boldsymbol{f}_{\mathrm{C}} + \boldsymbol{f}_{\mathrm{H}}$$

Hodge eigenvectors

- U_G spans the gradient subspace, $f_G = U_G \hat{f}_G$
- $U_{\rm C}$ spans the curl subspace, $f_{\rm C}$ = $U_{\rm C}\hat{f}_{\rm C}$

- Eigendecomposition of the first Hodge Laplacian $\mathbf{L}_1 = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathsf{T}}$
- The eigenvectors ${f U}$ can be rearranged into ${f [U_G\ U_C\ U_H]}$

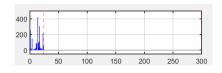
Edge flow signal can be decomposed as

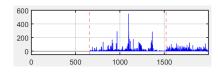
$$\boldsymbol{f} = \boldsymbol{f}_{G} + \boldsymbol{f}_{C} + \boldsymbol{f}_{H}$$

Hodge eigenvectors

- $U_{\rm G}$ spans the gradient subspace, $f_{\rm G}$ = $U_{\rm G}\hat{f}_{\rm G}$
- $U_{\rm C}$ spans the curl subspace, $f_{\rm C}$ = $U_{\rm C}\hat{f}_{\rm C}$
- $U_{\rm H}$ spans the harmonic subspace, $f_{\rm H}$ = $U_{\rm H}\hat{f}_{\rm H}$

Examples of Real-world Flows





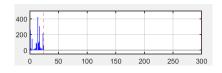
Forex

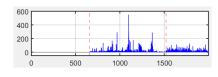
Lastfm

Observation-1: Normally, signal is localized in specific subspace

- Forex flow only has non-curl component
- Lastfm flow only has non-gradient component

Examples of Real-world Flows





Forex

Lastfm

Observation-1: Normally, signal is localized in specific subspace

- Forex flow only has non-curl component
- Lastfm flow only has non-gradient component

Observation-2: Under anomalies, we will have signal subspace spillage

- x true edge flow
- $\mathbf{f} = \mathbf{x} + \mathbf{n}$ -observed edge flow with $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

 \mathcal{H}_0 : **x** lives in some specific Hodge subspace \mathcal{H}_1 : **x** does not live in this Hodge subspace

Hypothesis \mathcal{H}_0 : the subspace is spanned by eigenvectors

$$\textbf{U}_{\Delta} \in \{\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{C}}, \textbf{U}_{\mathrm{H}}, [\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{C}}], [\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{H}}], [\textbf{U}_{\mathrm{C}}, \textbf{U}_{\mathrm{H}}]\}.$$

The complement eigenvectors are $\mathbf{U}_{\overline{\Delta}}$ so that $\mathbf{U}_{\overline{\Delta}}^{\mathsf{T}}\mathbf{U}_{\Delta}=\mathbf{0}$.

Hypothesis \mathcal{H}_0 : the subspace is spanned by eigenvectors

$$\textbf{U}_{\Delta} \in \{\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{C}}, \textbf{U}_{\mathrm{H}}, [\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{C}}], [\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{H}}], [\textbf{U}_{\mathrm{C}}, \textbf{U}_{\mathrm{H}}]\}.$$

The complement eigenvectors are $\mathbf{U}_{\overline{\Delta}}$ so that $\mathbf{U}_{\overline{\Delta}}^{\mathsf{T}}\mathbf{U}_{\Delta}=\mathbf{0}$.

Hypothesis \mathcal{H}_1 : the projection of f in the complement subspace is

$$\boldsymbol{\hat{f}}_{\overline{\Delta}} = \boldsymbol{U}_{\overline{\Delta}}^{\top} \boldsymbol{x} + \boldsymbol{U}_{\overline{\Delta}}^{\top} \boldsymbol{n} = \boldsymbol{\hat{x}}_{\overline{\Delta}} + \boldsymbol{\hat{n}}_{\overline{\Delta}}.$$

Hypothesis \mathcal{H}_0 : the subspace is spanned by eigenvectors

$$\textbf{U}_{\Delta} \in \{\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{C}}, \textbf{U}_{\mathrm{H}}, [\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{C}}], [\textbf{U}_{\mathrm{G}}, \textbf{U}_{\mathrm{H}}], [\textbf{U}_{\mathrm{C}}, \textbf{U}_{\mathrm{H}}]\}.$$

The complement eigenvectors are $\mathbf{U}_{\overline{\Delta}}$ so that $\mathbf{U}_{\overline{\Delta}}^{\mathsf{T}}\mathbf{U}_{\Delta}=\mathbf{0}$.

Hypothesis \mathcal{H}_1 : the projection of f in the complement subspace is

$$\boldsymbol{\hat{f}}_{\overline{\Delta}} = \boldsymbol{U}_{\overline{\Delta}}^{\top} \boldsymbol{x} + \boldsymbol{U}_{\overline{\Delta}}^{\top} \boldsymbol{n} = \boldsymbol{\hat{x}}_{\overline{\Delta}} + \boldsymbol{\hat{n}}_{\overline{\Delta}}.$$

$$\mathcal{H}_0: \quad \hat{\mathbf{f}}_{\overline{\Delta}} = \hat{\mathbf{n}}_{\overline{\Delta}} \\ \mathcal{H}_1: \quad \hat{\mathbf{f}}_{\overline{\Delta}} = \mathbf{U}_{\overline{\Delta}}^{\top} \mathbf{x} + \hat{\mathbf{n}}_{\overline{\Delta}} \ .$$

Simplicial Hodge Detector

Generalized likelihood ratio test (GLRT)

$$\mathcal{T}(\hat{\mathbf{f}}_{\overline{\Delta}}) = \frac{\rho\left(\hat{\mathbf{f}}_{\overline{\Delta}}; \hat{\mathbf{x}}_{\overline{\Delta}1}^*, \mathcal{H}_1\right)}{\rho\left(\hat{\mathbf{f}}_{\overline{\Delta}}; \hat{\mathbf{x}}_{\overline{\Delta}0}^*, \mathcal{H}_0\right)} \overset{\mathcal{H}_1}{\underset{\mathcal{H}_0}{\gtrless}} \gamma$$

Simplicial Hodge Detector

Generalized likelihood ratio test (GLRT)

$$\mathcal{T}(\hat{\mathbf{f}}_{\overline{\Delta}}) = \frac{p\left(\hat{\mathbf{f}}_{\overline{\Delta}}; \hat{\mathbf{x}}_{\overline{\Delta}1}^*, \mathcal{H}_1\right)}{p\left(\hat{\mathbf{f}}_{\overline{\Delta}}; \hat{\mathbf{x}}_{\overline{\Delta}0}^*, \mathcal{H}_0\right)} \overset{\mathcal{H}_1}{\underset{\mathcal{H}_0}{\gtrless}} \gamma$$

Simplicial Hodge Detector (SHD)

Hypothesis \mathcal{H}_0 : $\hat{\mathbf{x}}_{\Lambda 0}^* = \mathbf{0}$

Hypothesis \mathcal{H}_1 : $\hat{\mathbf{x}}_{\Delta 1}^* = \hat{\mathbf{f}}_{\overline{\Delta}}$

The SHD is

$$T_{\mathsf{SHD}}(\hat{\mathbf{f}}_{\overline{\Delta}}) = \|\hat{\mathbf{f}}_{\overline{\Delta}}\|_{2}^{2}/\sigma^{2} \underset{\mathcal{H}_{0}}{\overset{\mathcal{H}_{1}}{\gtrless}} \gamma$$

Spectral priors (sparse, low-pass) can be used to estimate the signal

Performance Guarantees

The detector $T_{\mathrm{SHD}}(\hat{\mathbf{f}}_{\overline{\Delta}})$ has a Chi-square distribution

$$T_{\text{SHD}}(\hat{\mathbf{f}}_{\overline{\Delta}}) \sim egin{cases} \chi^2_{N_{\overline{\Delta}}} & \text{under } \mathcal{H}_0 \\ \chi^2_{N_{\overline{\Delta}}}(\delta) & \text{under } \mathcal{H}_1 \end{cases}$$

Performance Guarantees

The detector $T_{\mathrm{SHD}}(\hat{\mathbf{f}}_{\overline{\Delta}})$ has a Chi-square distribution

$$T_{\text{SHD}}(\hat{\mathbf{f}}_{\overline{\Delta}}) \sim egin{cases} \chi^2_{N_{\overline{\Delta}}} & \text{under } \mathcal{H}_0 \\ \chi^2_{N_{\overline{\Delta}}}(\delta) & \text{under } \mathcal{H}_1 \end{cases}$$

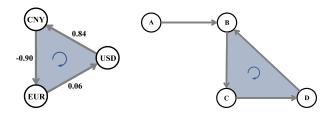
The probability of false alarm and detection are

$$\mathsf{P}_{\mathrm{FA}} \triangleq \mathsf{Pr} \big\{ \mathcal{T}_{\mathrm{SHD}} \big(\hat{\mathbf{f}}_{\overline{\Delta}} \big) > \gamma; \mathcal{H}_0 \big\} = Q_{\chi^2_{N_{\overline{\Delta}}}} \left(\gamma \right)$$

$$\mathsf{P}_\mathsf{D} \triangleq \mathsf{Pr} \{ \mathcal{T}_{\mathrm{SHD}}(\hat{\mathbf{f}}_{\overline{\Delta}}) > \gamma; \mathcal{H}_1 \} = Q_{\chi^2_{N_{\Delta}}(\delta)}(\gamma)$$

Experimental Setup

Dataset	\mathcal{H}_0	\mathcal{H}_1
Forex	Gradient flow	$\mathbf{x} = \mathbf{B}_2 \mathbf{t}, \ \mathbf{t} \sim \mathcal{N} \left(0, 0.3 \times 10^{-1} \mathbf{I} \right)$ $\mathbf{x} = \mathbf{B}_1^T \mathbf{v}, \ \mathbf{v} \sim \mathcal{N} \left(0, 5.0 \times 10^1 \mathbf{I} \right)$
Lastfm	Non-gradient flow	$\mathbf{x} = \mathbf{B}_{1}^{T} \mathbf{v}, \mathbf{v} \sim \mathcal{N} \left(0, 5.0 \times 10^{T} \mathbf{I} \right)$
Chicago	$\mathbf{x} = \mathbf{B}_2 \mathbf{t}, \ \mathbf{t} \sim \mathcal{N}\left(0, 2.3 \times 10^{-2} \mathbf{I}\right)$	$\hat{\mathbf{x}}_{G,i} \sim \mathcal{N}\left(\exp(-i/5)^{\top}, 0.01\right)$



Results

SNR = -12 dB

Dataset	SHD-Th.	SHD-Exp.	B-SMSD
Forex	0.71	0.71	0.45
Lastfm	0.99	0.99	0.39
Chicago	0.75	0.75	0.52

- Theoretical and empirical results match each other
- Line-graph detector B-SMSD doesn't consider high-order structures

Conclusion

- A matched subspace detection theory for topological signals
- Relied on Hodge subspace signal projections
- Principled and mathematically tractable
- Allows including topological spectral prior in the detection

Conclusion

- A matched subspace detection theory for topological signals
- Relied on Hodge subspace signal projections
- Principled and mathematically tractable
- Allows including topological spectral prior in the detection
- FW: Jointly consider all signals and sampled measurements

Conclusion

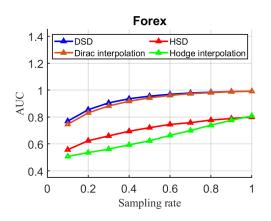
- A matched subspace detection theory for topological signals
- Relied on Hodge subspace signal projections
- Principled and mathematically tractable
- Allows including topological spectral prior in the detection
- FW: Jointly consider all signals and sampled measurements

Thank you!

Extended Results-Matched Topological Subspace Detector

Detector with missing values

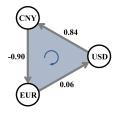
$$T(\mathbf{f}) = \frac{\|\mathbf{f} - \mathbf{U}_{\Delta\Theta}\hat{\mathbf{x}}_0^*\|_2^2 - \|\mathbf{f} - \mathbf{U}_{\Theta}\hat{\mathbf{x}}_1^*\|_2^2}{\sigma^2} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} \gamma$$



Datasets

Forex(real-world)

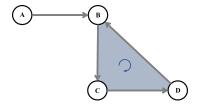
- Exchange rates between 25 different currencies
- 25 nodes, 300 edges and 2300 triangles
- Nodes: 25 different currencies
- Edges: logarithm exchange rate
- Triangles: relationships for three different currencies
- Task: Detecting whether the currency exchange flow is curl-free



Datasets

Lastfm(real-world)

- Users switching artists while playing music
- 657 nodes, 1997 edges and 1276 triangles
- Nodes: 657 different artists
- Edges: transitions between two artists
- Triangles: relationships for three different artists
- Task: Detecting whether the switch flow is divergence-free



Datasets

Chicago(synthetic)

- Traffic network of Chicago
- 546 nodes, 1088 edges and 112 triangles
- Nodes: 546 different junctions
- Edges: 1088 roads between junctions
- Triangles: areas enclosed by three roads
- Task: Detecting whether the synthetic flow is divergence-free